

School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3016 Control I

Test

(Closed-book; One double-sided A4 formula sheet allowed.)

Time: 90 minutes Total: 40 Date: 21 September 2011

Question 1 [20 marks]

The mechanical assembly shown in Figure 1 consists of two masses M_1 and M_2 with interconnecting springs and dampers. For the sake of our analysis ignore gravity (i.e. set $g=0 \text{ m/s}^2$). The input to the system is $y_1(t)$, the position of mass M_1 , and the output of the system is $y_2(t)$, the position of mass M_2 .

Figure 1: Mechanical assembly.

- a. Derive the transfer function relating $y_2(t)$ (as output) to $y_1(t)$ (as input). (10)
- b. Draw the state diagram of the system. (6)
- c. Verify the transfer function derived in (a.) by applying block diagram transformation theorems to the state diagram derived in (b.). (4)

Question 2 [20 marks]

A helicopter stabilisation system is shown in Figure 2(a).

a. Construct the root locus for this system.

- b. Determine the gain values K at break-in and/or breakaway points.
- c. Determine the gain K for which the system will be marginally stable as well the frequency of oscillation during marginal stability. (6)

(4)

Figure 2. Helicopter stabilisation system.

Table of Laplace Transforms

	$f(t) = \mathcal{Z}^{-1}[F(s)]$	$F(s) = \mathcal{L}[f(t)]$
1.	$\delta(t)$	1
2.	$t^n u(t), \qquad n = 0,1,2,\dots$	$\frac{n!}{s^{n+1}}, \qquad n=0,1,2,\dots$
3.	$t^n e^{\lambda t} u(t), n = 0,1,2,\dots$	$\frac{n!}{(s-\lambda)^{n+1}}, \qquad n=0,1,2,\dots$
4.	$e^{\alpha t}\sin\beta tu(t)$	$\frac{\beta}{(s-\alpha)^2+\beta^2}$
5.	$e^{\alpha t}\cos\beta tu(t)$	$\frac{s-\alpha}{(s-\alpha)^2+\beta^2}$
6.	$\frac{1}{\omega_n \sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin \omega_n \sqrt{1-\zeta^2} t$	$\frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Important Properties of the Laplace Transform

Operation	Time domain $f(t)$	Frequency domain $F(s)$
Scaling $(a>0)$	f(at)	$\frac{1}{a}F\left(\frac{1}{a}\right)$
Time shift $(t_o > 0)$	$f(t-t_o)u(t-t_o)$	$F(s)e^{-st_o}$
Time differentiation	$\frac{df}{dt}(t)$	$sF(s) - f(0^-)$
Time integration	$\int_{-\infty}^{t} f(t) dt$	$s^{-1}F(s) + s^{-1} \int_{-\infty}^{0} f(t) dt$
Frequency shift	$f(t)e^{s_o t}$	$F(s-s_o)$