CONTROL I

ELEN3016

Classical Design in the Frequency Domain

(Lecture 21)

Overview

- First Things First!
- Phase-Lag Compensator Design Methods
- Phase-Lag Compensator Example
- Tutorial Exercises & Homework
- Next Attraction!

First Things First!

• None

^

- Analysis of the Phase-Lag Compensator
 - Frequency at maximum phase lag is

$$\omega_m = \sqrt{\frac{a_0}{a_1 b_1}}$$

- Corresponding maximum phase lag is $\sin \phi_m = \frac{1 - \alpha}{1 + \alpha} \quad \text{or} \quad \alpha = \frac{1 - \sin \phi_m}{1 + \sin \phi_m}$

Lag Compensator Design – Method 1

- Select a_0 to meet any specified steady-state error spec.
- Plot the uncompensated open-loop frequency response. From it determine the magnitude value, say $|G_p(j\omega_0)|$, associated with the phase $5^\circ + PM 180^\circ$ and set $1/\alpha = |G_p(j\omega_0)|$. When the lag compensator is combined with the plant this point will become the unity gain point of the frequency resp. The corresponding frequency will be $10a_0/a_1$, so $\omega_0 = 10a_0/a_1$.

- From these two equations we can now solve for a_1 and b_1 .

Method 1 cont'd

- Draw compensated open-loop Bode plots and inspect design.
- Close the loop and determine appropriate closed-loop responses (i.e. transient response and frequency response).

Study the examples in Burns and in Raven. (Omit in 2015) Study the examples in Burns using Method 2.

Lag Compensator Design – Method 2

- Assume the desired phase margin, *PM*, to be specified.
- Select a_0 to meet any specified steady-state error spec.
- Plot the frequency response of $a_0G_p(j\omega)$.
- If the desired modulus-crossover frequency ω_{gc} is not specified then select ω_{gc} to satisfy the following inequalities:

 $\angle G_p(j\omega_{gc}) > -180^\circ + PM$ (For lag compensation)

$$b_1 > 0$$
 (For stable controller)

– If ω_{gc} happens to be specified, check that it satisfies the above inequalities.

Method 2 cont'd

– Given the modulus-crossover frequency ω_{gc} as well as phase margin *PM* required, the compensated open-loop system must satisfy

$$G_c(j\omega_{gc})G_p(j\omega_{gc}) = \frac{a_1 j\omega_{gc} + a_0}{b_1 j\omega_{gc} + 1} \underbrace{M_G}_{G_p(j\omega_{gc})} = 1e^{j(-180^\circ + PM)}$$

giving the following design equations,

$$a_1 = \frac{1 + a_0 M_G \cos(PM - \theta_G)}{-\omega_{gc} M_G \sin(PM - \theta_G)} \qquad b_1 = \frac{\cos(PM - \theta_G) + a_0 M_G}{\omega_{gc} \sin(PM - \theta_G)}$$

after some algebra.

- Method 2 cont'd
 - Draw compensated open-loop Bode plots and inspect design.
 - Close the loop and determine appropriate closed-loop responses (i.e. transient response and frequency response).

- Example - Plant, $G_p(s) = \frac{10}{s(s+5)}$.
 - Specifications:
 - Unit ramp steady-state error: 5% Crossover frequency: $\omega_{gc} = 2$ rad/s

Phase margin: $PM = 40^{\circ}$

- Open-loop poles: s = 0, -5.

• Example cont'd

- Gain $a_0 = 10$ meets steady-state error spec.
- Next, draw Bode plots for $a_0G_p(j\omega)$.
- At $\omega = \omega_{gc} = 2$ rad/s we find $a_0 M_G = 9.28$ and $\theta_G = -111.8^\circ$.
- The above design equations yield $a_1 = 8.185$ and $b_1 = 8.892$.

- Controller:
$$G_c(s) = 10 \frac{0.82s + 1}{8.89s + 1}$$
,

C

Lag Compensation Advantages

- Stability margin is improved.
- Low-frequency characteristics are maintained or improved.
- System bandwidth is reduced advantageous if high-frequency noise is a problem.

Lag Compensation Disadvantages

- Reduced bandwidth might make system response too sluggish.
- Might cause the system's transient response to have one very slow term.

• Lead or Lag Compensation?

- To stabilise the closed-loop system given a stable open-loop system use either lead or lag comp.
- To stabilise the closed-loop system when given an unstable open-loop system use a lead comp.
- If the desired modulus-crossover frequency ω_{gc} is larger than that of the plant use lead compensator. If smaller use a lag compensator.

Tutorial Exercises & Homework

• Tutorial Exercises

To be announced at the beginning of the tut session.

- Homework
 - None

Conclusion

- Phase-Lag Compensator Design Methods
- Phase-Lag Compensator Example
- Tutorial Exercises & Homework

Next Attraction! – Miss It & You'll Miss Out!

Discrete-Time Signals & Systems (Burns, Chapter 7)

Thank you! Any Questions?