CONTROL I

ELEN3016

Classical Design in the Frequency Domain

(Lecture 20)

Overview

- First Things First!
- Gain and Phase Margins
- 1st-Order Controllers
- Phase-Lead Compensator Design Methods
- Phase-Lead Compensator Example
- Tutorial Exercises & Homework
- Next Attraction!

First Things First!

• None

^

• Gain & Phase Margins Explained

- *Gain margin* is the amount of gain increase that the system can tolerate before it becomes unstable.
- *Phase margin* is the amount of time delay that the system can tolerate before it becomes unstable.
- Gain & phase margins are just different ways of looking at same thing – system stability.
- If the gain margin is zero then so is the phase margin and vice versa. Thus they are in total agreement about the onset of marginal stability.

Gain Margin on the Bode plot of $G(j\omega)H(j\omega)$.

Phase Margin on the Bode plot of $G(j\omega)H(j\omega)$.

Gain and Phase Margins on the Bode plot of $G(j\omega)H(j\omega)$.

Gain and Phase Margins on the Nyquist plot of $G(j\omega)H(j\omega)$.

Different Controller-Plant Configurations

- Controller in the forward path *cascade* controller
- Controller in the feedback path *feedback* controller
- Controller Formulations
 - Rational Function of Polynomials (RFoP)
 - Time Constant (TC)

Generic 1st-Order (Cascade) Controller

– Controller-system configuration considered:

Controller: $G_c(s)$, a 1st-order system Plant: $G_p(s)$, arbitrary.

1st-Order Controller – RFoP Formulation
 - 1st-order controller:

$$G_c(s) = \frac{a_1 s + a_0}{b_1 s + 1},$$

$$a_0, a_1, b_1 > 0$$

DC gain: a_0 Zero: $z = -a_0/a_1$ $\alpha = \frac{p}{z} = \frac{a_1}{a_0b_1}$ Pole: $p = -1/b_1$

1st-Order Controller – TC Formulation
 - 1st-order controller:

$$G_c(s) = K_c \frac{\tau_z s + 1}{\tau_p s + 1}, \quad \tau_z, \tau_p, K_c > 0$$

DC gain: K_c Zero: $z = -1/\tau_z$ $\alpha = \frac{p}{z} = \frac{\tau_z}{\tau_p}$ Pole: $p = -1/\tau_p$

- Analysis of the Phase-Lead Compensator
 - Frequency at maximum phase advance is

$$\omega_m = \sqrt{\frac{a_0}{a_1 b_1}}$$

- Corresponding maximum phase advance is

$$\sin \phi_m = \frac{\alpha - 1}{\alpha + 1}$$
 or $\alpha = \frac{1 + \sin \phi_m}{1 - \sin \phi_m}$

Lead Compensator Design – Method 1

- Select a_0 to meet any specified steady-state error spec.
- Plot the *uncompensated* open-loop frequency response to obtain the phase margin, *PM*, and modulus crossover frequency, ω_{gc} , defined by $|G_p(j\omega_{gc})|=1$.
- Set ω_m equal to ω_{gc} and estimate the phase advance needed to ensure required phase margin for the closed-loop system.
- Plotting the *compensated* open-loop frequency response reveals that ω_{gc} has increased. Reducing the compensator gain then returns ω_{gc} to its original value.

Study the examples in Burns.

Bode plots for *uncompensated* open-loop system

Bode plots for lead-*compensated* open-loop system (1)

Bode plots for lead-*compensated* open-loop system (2)

Bode plots for lead-*compensated* open-loop system (3)

Magnitude (dB)

C

Phase (deg)

Lead Compensator Design – Method 2

- Select a_0 to meet any specified steady-state error spec.
- Plot the frequency response for $a_0G_p(j\omega)$ to obtain the phase margin, $PM_{\rm actual}$.
- Estimate the phase advance needed to ensure required phase margin for the compensated system, and associated value of α :

$$\phi_m = PM - PM_{\text{actual}} + 5^\circ$$
 $\alpha = \frac{1 + \sin \phi_m}{1 - \sin \phi_m}$

Choose ω_m as the frequency at which the magnitude of the uncompensated system passes through the value -10log α (dB).
 (Due to the gain of -10log α added at ω_m by the compensator, ω_m will become the new modulus crossover frequency.)

Lead Compensator Design – Method 2

- Plot the compensated open-loop frequency response and determine its phase margin.
- If the required phase margin is achieved stop. If not, increase the value of α . To avoid the controller starting to act like a differentiator ensure that $\alpha \leq 10$. If an α -value of greater than 10 is required, introduce a second lead compensator in series with the first lead compensator.
- Close the loop and determine appropriate closed-loop responses (i.e. transient response and frequency response).

Study the examples in Burns and in Raven. (Omit this year)

Lead Compensator Design – Method 3

- Select a_0 to meet any specified steady-state error spec.
- Plot the frequency response of $a_0G_p(j\omega)$.
- Given the modulus-crossover frequency ω_{gc} as well as phase margin *PM* required, the compensated open-loop system must satisfy

$$G_c(j\omega_{gc})G_p(j\omega_{gc}) = \frac{a_1 j\omega_{gc} + a_0}{b_1 j\omega_{gc} + 1} \underbrace{M_G}_{G_p(j\omega_{gc})} = 1e^{j(-180^\circ + PM)}$$

giving the following design equations,

$$a_1 = \frac{1 + a_0 M_G \cos(PM - \theta_G)}{-\omega_{gc} M_G \sin(PM - \theta_G)} \qquad b_1 = \frac{\cos(PM - \theta_G) + a_0 M_G}{\omega_{gc} \sin(PM - \theta_G)}$$

after some algebra.

Method 3 cont'd

- Draw compensated open-loop Bode plots and inspect design.
- Close the loop and determine appropriate closed-loop responses (i.e. transient response and frequency response).
- If the required closed-loop system's performance is not met, reduce the phase margin specified and repeat the design to obtain the controller $G_{c,1}(s)$. Afterwards design an additional lead controller $G_{c,2}(s)$ for the remaining phase margin. For the design of the additional lead controller, the plant is now considered to be $G_{c,1}(s) G_p(s)$.

- Example - Plant, $G_p(s) = \frac{400}{s(s^2 + 30s + 200)}$.
 - Specifications:
 - Unit ramp steady-state error: 10% Crossover frequency: $\omega_{gc} = 14$ rad/s Phase margin: $PM = 45^{\circ}$
 - Open-loop poles: s = 0, -10, -20.

• Example cont'd

– Ramp error constant:

 $K_{v} = \lim_{s \to 0} s G_{c}(s) G_{p}(s) = \lim_{s \to 0} \frac{400 a_{0}}{(s^{2} + 30s + 200)} = 2a_{0}$

- Example cont'd
 - Ramp error constant:

$$K_{v} = \lim_{s \to 0} s G_{c}(s) G_{p}(s) = \lim_{s \to 0} \frac{400 a_{0}}{(s^{2} + 30s + 200)} = 2a_{0}$$

100

Unit ramp steady-state error:

$$e_{ss} \left| \begin{array}{l} \text{Unit} \\ \text{Ramp} \end{array} \right|_{R=1} = \frac{1}{2a_0} = 10\%$$

$$\Rightarrow a_0 = \frac{1}{2 \times 0.1} = \frac{10}{2} = 5 \ (=14 \text{dB}) \quad \text{(Additional gain needed)}$$

• Example cont'd

- To satisfy steady-state error select $a_0 = 5$.
- Next, draw Bode plots for $a_0G_p(j\omega)$.
- At $\omega = \omega_{gc} = 14$ rad/s we find $a_0 M_G = 0.34$ and $\theta_G = -179^\circ$.
- The above design equations yield $a_1 = 1.1423$ and $b_1 = 0.0390$.

- Controller/compensator: $G_c(s) = 5 \frac{0.229s + 1}{0.039s + 1}$

Magnitude (dB)

C

Phase (deg)

Bode plots for compensated open-loop system

Tutorial Exercises & Homework

- Tutorial Exercise
 - Derive the formulas for the analytical phase-lead compensator design (i.e. Method 3).
- Homework
 - Study all relevant sections in Burns.

Conclusion

- Gain and Phase Margins
- 1st-Order Controllers
- Phase-Lead Compensator Design Methods
- Phase-Lead Compensator Example
- Tutorial Exercises & Homework

Next Attraction! – Miss It & You'll Miss Out!

 Phase-Lag Compensators (Burns, Chapter 6)

Thank you! Any Questions?