CONTROL I

ELEN3016

1

Time Domain Analysis

(Lecture 5)

Overview

- First Things First!
- Time Domain Analysis (Overview)
- Examples
- Tutorial Exercises & Homework
- Next Attraction!

First Things First!

Lab Notes

- To be finalised Thursday.

- Misprints
 - Burns: p 52; Fig 3.18, p 53; p 54; Eq (3.68),
 p 56; p 57.

(

Linear System Output (from Signals & Systems) Transient Response + Forced Response		
$x_o(t) = $ Zero-Input Response +	Zero-StateResponse	(Lathi, p 53)
Due to initial conditions	Due to convolution of input & impulse response	
= Natural Response + Forced Response (Lathi, p 80		(Lathi, p 80)
= Transient Response + Steady-StateResponse (Lathi, p 82)		
 For Sinusoidal Inputs Transient Response = National 	tural Response	

- Steady-State Response = Forced Response

Transient & Steady-State Regions

• Prototype 2nd-Order Transfer Function

$$a\ddot{x}_{o}(t) + b\dot{x}_{o}(t) + cx_{o}(t) = ex_{i}(t)$$

$$G(s) = \frac{X_o(s)}{X_i(s)} = \frac{e}{as^2 + bs + c}$$
$$= \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• Prototype 2nd-Order Transfer Function

$$a\ddot{x}_{o}(t) + b\dot{x}_{o}(t) + cx_{o}(t) = ex_{i}(t)$$

$$G(s) = \frac{X_{o}(s)}{X_{i}(s)} = \frac{e}{as^{2} + bs + c}$$

$$= \frac{K\omega_{n}^{2}}{s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}}$$

• Prototype 2nd-Order Transfer Function

• Poles of the Prototype 2nd-Order System – Over-damped ($b^2 > 4ac$ or $\zeta > 1$):

$$s_{1}, s_{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = -\omega_{n}\zeta \pm \omega_{n}\sqrt{\zeta^{2} - 1}$$

– Under-damped ($b^2 < 4ac$ or $\zeta < 1$):

Damped frequency,

$$s_1, s_2 = \frac{-b \pm j\sqrt{4ac - b^2}}{2a} = -\omega_n \zeta \pm j \, \overline{\omega_n \sqrt{1 - \zeta^2}}$$

Poles of the Prototype 2nd-Order System

Poles of the Prototype 2nd-Order System

Poles of the Prototype 2nd-Order System

ſ

Prototype 2nd-Order System – Step Response

Fig. 3.16 Effect that roots of the characteristic equation have on the damping of a second-order system.

• Prototype 2nd-Order System – Step Response

C

- Prototype 2nd-Order System Step Response
 - Refer to Burns, Figures 3.16 & 3.19.
 - Observation 1: ω_d increases (and approaches ω_n) as ζ approaches zero.
 - Observation 2: Output settles in the shortest time when $\zeta = 1$.
 - Study the derivations in Burns, Section 3.6.4.

2nd-Order System – Step Response Analysis

C

• 2nd-Order System – Step Response Analysis – For unity-gain K = 1 and $x_i(t) = Bu(t)$:

 $PO = \frac{\text{Peak value - Final value}}{\text{Final value}} \times 100\% = 100 e^{-\pi\zeta/\sqrt{1-\zeta^2}}$ $a_1 = B e^{-\zeta\omega_n t_p}, \qquad t_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$ $PO = \frac{a_1}{B} \times 100, \qquad t_p = \text{Time of first peak,}$

– Clearly ζ can be expressed i.t.o. PO.

- 2nd-Order System Step Performance Spec.
 - Rise time: $t_r = t \Big|_{x_o = 0.9B} t \Big|_{x_o = 0.1B}$
 - 2% Settling time: $t_s = \frac{\ln 50}{\zeta \omega_n}$

- Delay time:
$$t_d = t \Big|_{x_o = 0.5B}$$

 Contours in the s-plane (Kuo, Automatic Control Systems, 7th ed., Fig 7.15, p. 391 & Lathi, Signals, Systems and Controls, pp. 253–255.)

Tutorial Exercises & Homework

- Tutorial Exercises
 - Burns, Examples 3.9 and 3.10
- Web Surfing Exploring 2nd-Order Systems

http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/SysDyn/SysDyn2.html

• Homework

- Burns: Example 3.7, p 51, Sec 3.4, 3.5, 3.6.4, 3.8

Conclusion

- Briefly Reviewed Time Domain Analysis
- Focused on the Prototype 2nd-order system
- Burns, Sec 3.4, 3.5, 3.6.4, 3.8 (Self-study!)
- Tutorial Exercises & Homework

Next Attraction! – Miss It & You'll Miss Out!

 Closed-Loop Control Systems (Burns, Chapter 4)

. . .

Thank you! Any Questions?