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Overview

First Things First!
Digital Controller Design

(Classical Methods, Numerical Methods,
Analytical Design, Optimum Response Digital

Design)
Tutorial Exercises & Homework



Digital Controller Design

e Computer-Controlled System
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backwards to the reference input and feedback input.

c(?)



Digital Controller Design

e Computer-Controlled System
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Digital Controller Design

e Computer-Controlled System
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Digital Controller Design

e Computer-Controlled System
R(2) E(z) D(z) M(2) G(z)
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Digital Controller Design

Computer-Controlled System cont'd

During the k th sampling interval
m(t) = m(kT), kT <t<(k+DT
By letting G(s) represent the ZOH & plant
combination, C(s) = G(s) M*(s) and starring
yields
C*(s) =G™(s) M™(s)
and
C(2) =G(2) M(2)



Digital Controller Design

Computer-Controlled System cont'd

Z transform of the digital controller is
M(z) = D(2) E(2)
Z transform of the output is
Mjgz) EJ(\z)
C(2) =G(2)D(2)E(2) = G(2)D(2)(R(2) -C(2))

giving
c(z)~ PG
1+ D(2)G(2)

R(2)



Digital Controller Design

Digital Controller Design via Classical
Methods

Transform G(z) to an equivalent s-plane
called the w-plane using the bilinear
transformation z=(W+1)/ (w-1).

Apply any classical design procedure.

Transform back to the z-plane using the
inverse transformation w=(Z+1)f (z-1).



Digital Controller via Classical Design

Example (Phillips & Nagle)

8
Plant, G, (s) = :
p(S) s(s+1)(Ls+1)
Specifications:
Unit DC gain.

Phase margin: PM =55



Digital Controller via Classical Design

Example cont’d

Selection of T:

System’s fastest time constant is 0.5 s. A rule of
thumb is to choose T one-tenth of the fastest time
constant i.e. T =0.05s.

ZOH—-Plant combination

G(s)=f1-e~)
Gy(s)

1
s2(s+1)(0.55+1)
Gy(s)




Digital Controller via Classical Design

Example cont’d
Discrete part of ZOH

G (s)=1—e 00 (T = 0055)

G, (2) = 3[1 e—0055] 1121

Z
Continuous part of ZOH and plant
1 1 15 2 0.5
S)= = —_ + —_
&(5) s2(s+1)(0.55s+1) s2 s s+1 S+2




Digital Controller via Classical Design

Example cont’d
Taking the Z-transform then yields

62(2)23[1 15 2 0.5}

— _|_ —
s s s+1 s+2
_0.0052_1.52+ 2z 0.5z
(z-1)° z-1 z-0.9512 z-0.9048




Digital Controller via Classical Design

Example cont’d

Z0OH & plant combination pulse transfer function
becomes

G(z) =G1(2)G,(2) =

2_1_0'0052—1'5Z+ 21 B 0.5z
z |(z-1)% z-1 z-0.9512 z-0.9048

 2°-299622° + 29862z —0.9899
z° —285602° +2.71662 — 0.8606




Digital Controller via Classical Design

Example cont’d

Z0OH & plant combination pulse transfer function
becomes

GW) = G(2)],_y.

w° —541.01w? +1733.38w+ 343206.69

w3 -14101w2 + 2573018 + 663209.94

... to be completed by you! ©



Digital Controller Design

Digital Controller Design via Numerical
Methods

Transform ordinary differential equations
to equivalent difference equations using
various approximations for integrals and
derivatives studied in numerical methods.

Particularly useful for deriving discrete
equivalent PID controllers from the standard
continuous time PID controller.



Digital Controller Design

Analytical Design

Expresses the controller pulse transfer
function D(z) in terms of the ZOH & plant
pulse transfer function G(z) and desired
closed-loop pulse transfer function C(z)/R(z).



Digital Controller Design

Analytical Design cont'd

Recall from an earlier slide that
E(z)

C(z) =G(2)D(2)(R(z) -C(2))
From this the expression for D(z) is
C(2) 1  C(2)/R(2)
D(z) = =
G(2)(R(z)-C(z)) G(2) (1-C(2)/R(2))




Digital Controller Design

e Analytical Design cont'd

— Recall from an earlier slide that
E(z)

C(2) =G(2)D(2)(R(2) -C(2))
— From this the expression for D(z) is

o). C@ 1 COIRE

G(2)(R(z)-C(2)) GC@D1-C(D/R®)




Analytical Design

Example (Raven)

Plant, G (s) = S(§S++21)) .

Specifications:
Sampling period: T =1.0s

Desired response required: c(t) =5(1—e ")



Analytical Design

Example cont’d
Z0OH-Plant combination

G(s) = [1—e~T) - +2) (T =1)
o St
G, (s)
Discrete part of ZOH
G(s)=1-e°
z—1

G(2) = 3[1—e_5]:1— 7 i=2 =

V4



Analytical Design

Example cont’d
Plant and continuous part of ZOH

G, (s) = (s+2) 2_l+i

s2(s+1) s2 s s+1

27 Z 4
L) = ———+— | = — +
(2) 3[32 S S-I—J (z-1)? z-1 z-0.368
Z0OH & plant combination pulse transfer function
1.368z —-0.104
7% —1.3682 +0.368

G(z) =G1(2)Gy(2) =



Analytical Design

Example cont’d
The Laplace transform of the desired response is

oL

S S+2
and
1 1 Z Z 4.322

C(z)= 53&_@} N 5[2 17 7 _0_135} " (z-1)(z—0.135)

From this we derive the ratios
C(2) _ 4.32 and 1- C(2) _ 72-4.45
R(z) z-0.135 R(z) z-0.135




Analytical Design

Example cont’d

Substituting the above expressions into the formula
for D(z) vyields

7°-1.3682+0.368 4.32
1.3682—-0.104 z-0.135

 4.327° -5.917 +1.59

© 1.36822 —6.202z + 0.46

| 3.16-4.32271+1.1627° M(2)
© 1-453714034z2  E(2)

D(z) =




Analytical Design

Example cont’d
Cross multiplication gives
(1-45321+0.34272)M (2) = (3.6 - 4.322 1 +1.162 % JE(2)

The time domain equation for the controller is
m(k) =3.16e(k)—4.32e(k —-1) +1.16e(k —2) +
+4.53m(k —1)-0.34 m(k —2)



Digital Controller Design

Optimum Response Design

Optimum: The closed-loop system responds
to a step input in the minimum time with no
overshoot and no steady-state error.

For a system of order N the step response
settles to the desired final value after N+1
sample instants.

Proposed by R.E. Kalman in the 1954.




2"d Order Optimum Response

First sampling period excitation

/

/ Desired c(0)
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2"d Order Optimum Response

Second sampling period excitation

C(t) A

01

/

Desired c(0)

Jo




2"d Order Optimum Response

Third sampling period excitation

C(t) A

01

Desired c()

Jdo
P

/




2"d Order Optimum Response

Complete plant excitation & output response

C(t) A

do

Jo +01 + 02
Jo + 1




2"d Order Optimum Response

Complete plant excitation & output response

C(t) A

P2

P1




2"d Order Optimum Response

Derivation (Raven)

For unit step input

R(Z)=—L-=1+z1+z272+7273+...
1-z7*

The ZOH's output is (see earlier graphical depiction)

M(2) =g +(Go + )2 "+ (0o + 0y + )z 2 +27°

+...)

Long division yields (see next slide)

M(z) 1 )
== 7 7
R(2) Oo + 012 ~ +0Qp




2"d Order Optimum Response

Derivation (Raven)

Long division:

1 2

1+z2 “"+z2 3

+z‘3+...'qo+(qo+q1)z‘1+(q0+q1+q2)(z‘2+z‘ +...)



2"d Order Optimum Response

Derivation (Raven)

Long division:
Yo
1+z2 472724+ 7273+ ‘ 0o + (g + ql)z_1 +(Qo+ 0y + q2)(z_2 +2734..)
Qo + Qo+ + Qo(z72+273+..)

0 + qlz‘1 + (ql+q2)(z_2+z‘3+...)



2"d Order Optimum Response

Derivation (Raven)

0 + q2(z_2+z_3+...

Long division:
Qo+ Ghz "
1+z 427247273+ ‘ 0o + (g + ql)z_l +(Qo+ 0y + qz)(z_2 +773+ ...
Qo + QoZ * + Qo(z272+273+..)
0 + qlz_l + (ql+q2)(z_2+z_3+...)
hz ™t + Gz 2+273+..)
)



2"d Order Optimum Response

Derivation (Raven)

Long division:

14z 47272477

Qo+ thZ ™" +0p7 2
S| do + (Ao + )2 (Go + 0y +0p)(Z 2420
Qo + QoZ * + Qo(z72+273+..)
0 + qlz_l + (C11+q2)(z_2 +273+..)
Gzt + Gz 2+273+..)
0 + q2(2‘2+z‘3+...)
q2(z‘2 +273+ ...

0



2"d Order Optimum Response

Derivation (Raven)

Long division:

Qo+ thZ ™" +0p7 2
1+z 4772 +z‘3+...‘ Qo+ (Ao + ) Z T+ (Uo+ U + )2 2 +2 3 +..)
Qo + QoZ * + Qo(z72+273+..)
0 + qlz_l + (ql+q2)(z_2+z_3+...)
/ Gzt + Gz 2+273+..)
0 + q2(2‘2+z‘3+...)
M(z) 1 2 q2(z‘2+z‘3+...)

=...=Qp+QZ "+0QrZ 5

R(2)



2"d Order Optimum Response

Derivation cont’d

The plant’s sampled output is (see earlier graphical depiction)

C@)=pz t+(p+p)z2+23+27%+..)

Long division yields

C(z _ _
—REZ;:...:plz 1+ p22 2

Pulse transfer function of the ZOH and plant combination is

G(z) = C(z) _ C(29)/R(2) _ 0,2+ p,z
M@) M@)/R@)  do+qz ™ +0p27"




2"d Order Optimum Response

Derivation cont’d

The plant’s output is

C@)=pz t+(p+p)z2+23+27%+..)

Pulse transfer function of the digital controller is
D) M@ __ M@ _ MQ@)/RE) _do+&z +G2 "

~ E(z) R(@)-C(z) 1-C(2)/R(z) 1-pzt-p,z72

The inverse Z-transform gives
m(k) =qpe(k) +qe(k-1) + g, e(k—2) +
+ pym(k —1)+ p, m(k—2)



2"d Order Optimum Response

Derivation cont’d

The FVT yields the steady-state of the plant output as

c(0)=limZLC(z)=...= p + p,
z—1

The steady-state of m(t) is

m(eo) = lim &M (z) =...=qp + 0y + 0,
z—1

The closed-loop system steady-state gain is

C
K_—(OO) =P+ P

- r(0)



2"d Order Optimum Response

Derivation cont’d

The plant steady-state gain is
_C(®) _ ptP

m() dp+0;+0z
For a 2" order plant the closed-loop pulse transfer function
has the form 1 5

vz T +arz
G(z)=— 1 : -2

by +z " +byz

p

From this we obtain

K=p+py=k(ag +ay) K=




2"d Order Optimum Response

Interpretation

Considering the product of D(z) and G(z) namely

-1 -2 -1 -2
+037 P12 "+ Paz

D(2)G(z) = 01

1- iz =Pz ™2 Qo+ Gz +0pZ
_ prz "+ pyz”?
1-pz = ppz”

shows that the controller zeros cancel the ZOH & plant poles
and that both poles and zeros of the compensated open-loop
system D(z)G(z) depend on p; and p, exclusively.



2"d Order Optimum Response

Interpretation cont'd

The closed-loop compensated system now has as pulse
transfer function

C(z D(z2)G(z _ _
(@)_ D@G@ _ 1, 2
R(z) 1+D(2)G(z)
and clearly is of finite impulse response (FIR) type even though

the compensated open-loop system is of infinite impulse
response (IIR) type.

This FIR structure explains why the closed-loop compensated
system’s step response settles in a finite number of samples.



2"d Order Optimum Response

Interpretation cont'd

When the sampling period T is sufficiently shorter than the
fastest time constant of the closed-loop compensated system
the step response of the closed-loop compensated system is
guaranteed to be settled for t > 2T.



2"d Order Optimum Response

Example (Raven)

Plant, G, (s)= S(?s++21)) .

Specifications:
Sampling period: T =1.0s
Optimum response required.
Closed-loop steady-state gain: K =5



2"d Order Optimum Response

Example cont’d
Z0OH—-Plant combination
G(s) = (1— e ST ) (28 +2)
o St
G, (s)
Discrete part of ZOH

G(s)=1-e3 (T—l)
G (z) = 3[1 e ] 1-z7%

Z



2"d Order Optimum Response

Example cont’d
Plant and continuous part of ZOH

G, (s) = (s+2) 2_l+i

s2(s+1) s2 s s+1

27 Z 4
L) = ———+— | = — +
(2) 3[32 S S-I—J (z-1)? z-1 z-0.368
Z0OH & plant combination pulse transfer function
1.368z —-0.104
7% —1.3682 +0.368

G(z) =G1(2)Gy(2) =



2"d Order Optimum Response

Example cont’d

From the numerator
a; +a, =1.368—-0.104 =1.264

Desired gain
K — p1+ pz :5= (a1+az)k :1264k

K —i:3.96

- 1.264
For the required gain the plant becomes

k(1.368z-0.104)  542-0.42z"

G(s) =

k(22 -1.3682+0.368) 3.96-5.42771+1.46777



2"d Order Optimum Response

Example cont’d
Equating
plz‘l + pzz‘2 B 5.42—-0.4277"
Qo+ 0z +0,2 2 3.96-5.42z1+1.46772
and comparing coefficients yields
P, =542, p, =-042, q;=3.96, q; =-5.42, 0, =1.46.

Verification:
P+ Py, =542-0.42=5.



2"d Order Optimum Response

Example cont’d

The time domain equation for the controller is

m(k) =3.96e(k) —5.42e(k —1) +1.46e(k — 2) +
+5.42m(k —1) —0.42m(k —2)



Tutorial Exercises & Homework

Tutorial Exercises

To be announced at the beginning of the tut session.

Homework

Study all relevant sections in Burns.



Conclusion

Digital Controllers — Overview
Analytical Design — Theory & Example
Optimum Response Design — Theory & Example

For general optimum response design refer to
F.H. Raven “Automatic Control Engineering” 5t
edition, pp 494—-496 (Optional)

Tutorial Exercises & Homework



Conclusion

e ... a last few questions ...

— Was the course a mathematical as you have
been told?



Conclusion

.. a last few questions ...

Do you think Control has application other
than in just Control Engineering? (Should all
E&I engineers be taught Control?)



Conclusion

e ... a last few questions ...

— What would you have like to see in the
course?



" Thank you
or your interes






