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Overview 

• First Things First! 

• Digital Controller Design  

 (Classical Methods, Numerical Methods, 
Analytical Design, Optimum Response Digital 
Design) 

• Tutorial Exercises & Homework 

 

 



Digital Controller Design 

• Computer-Controlled System 
 

 
Computer 

Note:  More correctly (but equivalently) the sampler should be moved 
          backwards to the reference input and feedback input. 



Digital Controller Design 

• Computer-Controlled System 
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• Computer-Controlled System 
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Digital Controller Design 

• Computer-Controlled System 
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Digital Controller Design 

• Computer-Controlled System cont’d 
 

– During the k th sampling interval 

 

– By letting         represent the ZOH & plant 
combination,                          and starring 
yields 
 

 and 
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Digital Controller Design 

• Computer-Controlled System cont’d 
 

– Z transform of the digital controller is 

 

– Z transform of the output is 
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• Digital Controller Design via Classical 
Methods 

– Transform         to an equivalent  s-plane 

called the w-plane using the bilinear 
transformation                         . 

– Apply any classical design procedure. 

– Transform back to the z-plane using the 
inverse transformation                       . 

 

Digital Controller Design 
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• Example (Phillips & Nagle) 
 

– Plant,                                    . 

 

– Specifications: 

    Unit DC gain.  

    Phase margin: 

Digital Controller via Classical Design 
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• Example cont’d 
– Selection of    : 

 System’s fastest time constant is       s.  A rule of 
thumb is to choose     one-tenth of the fastest time 
constant i.e.              s. 

 

– ZOH–Plant combination 

 

Digital Controller via Classical Design 
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• Example cont’d 
– Discrete part of ZOH 

 

 

 

– Continuous part of ZOH and plant 

Digital Controller via Classical Design 
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• Example cont’d 
– Taking the Z-transform then yields 

 

 

 

 
 

 

 

 

Digital Controller via Classical Design 
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• Example cont’d 
– ZOH & plant combination pulse transfer function 

becomes 

 

 

 

 
 

 

 

Digital Controller via Classical Design 
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• Example cont’d 
– ZOH & plant combination pulse transfer function 

becomes 

 

 

 

 
 

 

... to be completed by you!  

Digital Controller via Classical Design 
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• Digital Controller Design via Numerical 
Methods 

– Transform ordinary differential equations       
to equivalent difference equations using 
various approximations for integrals and 
derivatives studied in numerical methods. 
 

– Particularly useful for deriving discrete 
equivalent PID controllers from the standard 
continuous time PID controller. 

Digital Controller Design 



• Analytical Design 
 

– Expresses the controller pulse transfer 
function         in terms of the ZOH & plant 
pulse transfer function          and desired 
closed-loop pulse transfer function              . 

 

Digital Controller Design 
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• Analytical Design cont’d 
 

– Recall from an earlier slide that  

 

 

– From this the expression for         is 

 

Digital Controller Design 
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• Analytical Design cont’d 
 

– Recall from an earlier slide that  

 

 

– From this the expression for         is 

 

Digital Controller Design 
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• Example (Raven) 
 

– Plant,                         . 

 

– Specifications: 

   Sampling period:            s 

 Desired response required:  

  

Analytical Design 
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• Example cont’d 
– ZOH–Plant combination 

 

 

 

– Discrete part of ZOH 

Analytical Design 
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• Example cont’d 
– Plant and continuous part of ZOH 

 

 

 

 
 

– ZOH & plant combination pulse transfer function 

 

 

Analytical Design 
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• Example cont’d 
– The Laplace transform of the desired response is 

 

 

 and 

 

 
 

– From this we derive the ratios 
 

                                  and 

Analytical Design 
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• Example cont’d 
– Substituting the above expressions into the formula 

for           yields 

 

 

  

 

 

 
 

Analytical Design 
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• Example cont’d 
– Cross multiplication gives 

 

 

– The time domain equation for the controller is 

Analytical Design 
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• Optimum Response Design 
 

– Optimum: The closed-loop system responds 
to a step input in the minimum time with no 
overshoot and no steady-state error. 

– For a system of order N the step response 

settles to the desired final value after N+1 

sample instants. 

– Proposed by R.E. Kalman in the 1954. 
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2nd Order Optimum Response 

First sampling period excitation   
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2nd Order Optimum Response 

Second sampling period excitation   
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2nd Order Optimum Response 

Third sampling period excitation   
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2nd Order Optimum Response 

Complete plant excitation & output response   
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2nd Order Optimum Response 

Complete plant excitation & output response   
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– For unit step input  

 

 

– The ZOH’s output is (see earlier graphical depiction) 

 

 

– Long division yields (see next slide)  
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– Long division: 
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– Long division: 
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– Long division: 
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– Long division: 
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2nd Order Optimum Response 

• Derivation (Raven) 
 

– Long division: 
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2nd Order Optimum Response 

• Derivation cont’d 
 

– The plant’s sampled output is (see earlier graphical depiction) 

 

 

– Long division yields  

 

 

– Pulse transfer function of the ZOH and plant combination is 
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2nd Order Optimum Response 

• Derivation cont’d 
 

– The plant’s output is 

 

 

– Pulse transfer function of the digital controller is 

 

 

 

– The inverse Z-transform gives 
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2nd Order Optimum Response 

• Derivation cont’d 
 

– The FVT yields the steady-state of the plant output as 

 

 

– The steady-state of         is  

 

 

– The closed-loop system steady-state gain is 
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2nd Order Optimum Response 

• Derivation cont’d 
 

– The plant steady-state gain is 

 

 
 

– For a 2nd order plant the closed-loop pulse transfer function 
has the form 

 

 

– From this we obtain 
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2nd Order Optimum Response 

• Interpretation 
 

– Considering the product of           and           namely 

 

 
 

 

 

 

 shows that the controller zeros cancel the ZOH & plant poles 
and that both poles and zeros of the compensated open-loop 
system                  depend on      and      exclusively. 
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2nd Order Optimum Response 

• Interpretation cont’d 
 

– The closed-loop compensated system now has as pulse 
transfer function 

 

 
 

 and clearly is of finite impulse response (FIR) type even though 
the compensated open-loop system is of infinite impulse 
response (IIR) type. 

 

– This FIR structure explains why the closed-loop compensated 
system’s step response settles in a finite number of samples. 
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2nd Order Optimum Response 

• Interpretation cont’d 
 

– When the sampling period      is sufficiently shorter than the 
fastest time constant of the closed-loop compensated system 
the step response of the closed-loop compensated system is 
guaranteed to be settled for          . 
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• Example (Raven) 
 

– Plant,                         . 

 

– Specifications: 

      Sampling period:            s 

    Optimum response required.  

    Closed-loop steady-state gain: 
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• Example cont’d 
– ZOH–Plant combination 

 

 

 

– Discrete part of ZOH 

2nd Order Optimum Response 
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• Example cont’d 
– Plant and continuous part of ZOH 

 

 

 

 
 

– ZOH & plant combination pulse transfer function 
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• Example cont’d 
– From the numerator 

 

– Desired gain 

 

 
 

– For the required gain the plant becomes 
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• Example cont’d 
– Equating 

 

 

 and comparing coefficients yields 

 
 

– Verification: 
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• Example cont’d 
 

– The time domain equation for the controller is 

2nd Order Optimum Response 
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Tutorial Exercises & Homework 

• Tutorial Exercises 
 

– To be announced at the beginning of the tut session. 

 
 

• Homework 
 

– Study all relevant sections in Burns. 

 
 



Conclusion 

• Digital Controllers – Overview 
 

• Analytical Design – Theory & Example 
 

• Optimum Response Design – Theory & Example 
 

• For general optimum response design refer to 
F.H. Raven “Automatic Control Engineering” 5th 
edition, pp 494 – 496  (Optional) 
 

• Tutorial Exercises & Homework 
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Conclusion 

• … a last few questions … 

– Was the course a mathematical as you have 
been told? 

– Do you think Control has application other 
than in just Control Engineering? (Should all 
E&I engineers be taught Control?) 

– What would you have like to see in the 
course? 



  

Thank you           
for your interest! 




