CONTROL I

ELEN3016

Steady-State Error Analysis

1

(Lecture 18)

Overview

- First Things First!
- Steady-state Error Analysis & Examples
- Tutorial Exercises & Homework
- Next Attraction!

First Things First!

• None

^

Setting the Scene

C

- Concentrate on the unity-feedback case.

- Setting the Scene (cont'd)
 - Error-to-output transfer function is $\frac{E(s)}{R(s)} = \frac{1}{1+G(s)}.$

- Steady-state error for unity-feedback is $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}.$

- System Type for Unity-Feedback
 - *System type* is defined to be the number of poles of the system at the origin (i.e. s = 0).

- System Type for Unity-Feedback
 - *System type* is defined to be the number of poles of the system at the origin (i.e. s = 0).

- System Type for Unity-Feedback
 - *System type* is defined to be the number of poles of the system at the origin (i.e. s = 0).
 - Examples:

$$G(s) = \frac{(s+2)}{s^2(s+3)}$$
 is of type 2.
$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 is of type

is of type 0 for $|\zeta| < \infty$.

Steady-State Error for Step Input

- For a step input R(s) = R/s,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{1 + G(s)} = \frac{R}{1 + \lim_{s \to 0} G(s)}$$

Steady-State Error for Step Input

- For a step input R(s) = R/s,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{1 + G(s)} = \frac{R}{1 + \lim_{s \to 0} G(s)}$$

- Step/position error constant is defined as $K_p = \lim_{s \to 0} G(s) \implies e_{ss} \Big|_{\text{Step}} = \frac{R}{1 + K_p}$

Steady-State Error for Step Input (cont'd)

- For system type 0: $e_{ss} \Big|_{\text{Step}} = \frac{R}{1+K_p} \neq 0 \text{ since } |K_p| < \infty$ - For system type ≥ 1 : $e_{ss} \Big|_{\text{Step}} = 0 \text{ since } |K_p| = \infty$

Steady-State Error for Ramp Input

- For a ramp input $R(s) = R/s^2$,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{s + sG(s)} = \frac{R}{\lim_{s \to 0} sG(s)}$$

Steady-State Error for Ramp Input

- For a ramp input $R(s) = R/s^2$,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{s + sG(s)} = \frac{R}{\lim_{s \to 0} sG(s)}$$

- Ramp/velocity error constant is defined as

$$K_{v} = \lim_{s \to 0} s G(s) \implies e_{ss} \Big|_{\mathsf{Ramp}} = \frac{R}{K_{v}}$$

- Steady-State Error for Ramp Input (cont'd)
 - For system type 0: e_{ss}
 - For system type 1:

- For system type ≥ 2 : $e_{ss} \Big|_{\text{Ramp}}$

$$e_{ss} \Big|_{\text{Ramp}} = \pm \infty$$

 $e_{ss} \Big|_{\text{Ramp}} = \frac{R}{K_v} = \text{const.}$
 $e_{ss} \Big|_{\text{Ramp}} = 0$

Steady-State Error for Parabolic Input

- For a quadratic input $R(s) = R/s^3$,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{s^2 + s^2 G(s)} = \frac{R}{\lim_{s \to 0} s^2 G(s)}$$

Steady-State Error for Parabolic Input

- For a quadratic input $R(s) = R/s^3$,

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)} = \lim_{s \to 0} \frac{R}{s^2 + s^2 G(s)} = \frac{R}{\lim_{s \to 0} s^2 G(s)}$$

Parabolic/acceleration error constant is defined as

$$K_a = \lim_{s \to 0} s^2 G(s) \implies e_{ss} \Big|_{\text{Parabola}} = \frac{\kappa}{K_a}$$

D

- Steady-State Error for Parabolic Input
 - For system type 0: $e_{ss} \Big|_{\text{Parabola}} = \pm \infty$

 $e_{ss} \Big|_{\mathsf{Parabola}} = \pm \infty$

 $e_{ss}\Big|_{\text{Parabola}} = \frac{R}{K_c} = \text{const.}$

- For system type 1:
- For system type 2:

- For system type \geq 3: $e_{ss} \Big|_{\text{Parabola}} = 0$

Summary

- Error constants significant for analysis of unityfeedback systems for specific order of input.
- Use of the FVT assumes that sE(s) has no poles on $j\omega$ -axis or RHP.
- Arbitrary polynomial inputs imply a linear combination of the different orders of errors (i.e. step, ramp, parabolic etc.).
- For non-unity feedback, follow above process.

• Example

The system
$$G(s) = \frac{K(s+3.15)}{s(s+1)(s+0.5)}$$
, $H(s) = 1$

- is of type 1.
- Step I/P: $K_p = \pm \infty$ $e_{ss} \Big|_{\text{Step}} = \frac{R}{1+K_p} = 0$
- Ramp I/P: $K_v = 6.3K e_{ss} \Big|_{\text{Ramp}} = \frac{R}{K_v} \approx \frac{0.159R}{K}$
- Parabolic I/P: $K_a = 0$ $e_{ss} \Big|_{\text{Parabola}} = \frac{R}{K_a} = \infty$

- Error Constants and Transfer Functions
 - For the error transfer function we have

$$\frac{E(s)}{R(s)} = \frac{1}{1+G(s)} = \frac{1}{1+K_p} + \frac{1}{K_v}s + \frac{1}{K_a}s^2 + \dots$$

yielding the closed-loop transfer function as $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = 1 - \frac{1}{1+K_p} - \frac{1}{K_v}s - \frac{1}{K_a}s^2 - \dots$

- Error Constants and Poles & Zeros
 - For the closed-loop transfer function $\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{K \prod_{i=1}^{m} (s+\widetilde{z}_i)}{\prod_{j=1}^{n} (s+\widetilde{p}_j)}$

the position error constant has the form

$$K_p = \frac{K \prod_{i=1}^m \widetilde{z}_i}{\prod_{j=1}^n \widetilde{p}_j - K \prod_{i=1}^m \widetilde{z}_i}.$$

- Error Constants and Poles & Zeros cont'd
 - Similarly the velocity error constant is

$$\frac{1}{K_v} = \sum_{j=1}^n \frac{1}{\widetilde{p}_j} - \sum_{i=1}^m \frac{1}{\widetilde{z}_i}$$

and the acceleration error constant is

$$-\frac{2}{K_a} = \frac{1}{K_v^2} + \sum_{j=1}^n \frac{1}{\tilde{p}_j^2} - \sum_{i=1}^m \frac{1}{\tilde{z}_i^2}.$$

Tutorial Exercises & Homework

- Tutorial Exercises
 - Calculate the error constants for the system

$$G(s) = \frac{K(s+3.1)}{s^2(s+0.5)}, \quad H(s) = 1.$$

- Prove that the velocity error constant of the prototype 2nd order system is given by $K_v = \omega_n/2\zeta$. (Shinners 1972, p. 171)
- Express the error transfer as well as the closed-loop transfer functions in terms of error constants. (See earlier in these notes.)

Tutorial Exercises & Homework

Tutorial Exercises (cont'd)

- Express the error constants in terms of zeros and poles of the closed-loop system . (See earlier in these notes.)
- Homework

- Study all relevant sections in Burns.

Conclusion

- Studied steady-state error analysis for unityfeedback systems.
- Tutorial Exercises & Homework

Next Attraction! – Miss It & You'll Miss Out!

Zero-Error Systems and Controller design (Interlude)

Thank you! Any Questions?