CONTROL I

ELEN3016

Design using Root Locus Method

1

(Lecture 13)

Overview

- First Things First!
- Examples
- Root Locus Controller Design
- Variations on the Theme
- Tutorial Exercises & Homework
- Next Attraction!

First Things First!

Study break ... and beyond

Ļ

- Progress with Laboratory Experiment?
- Misprint: "G(s)HJ(s)" in Figure 5.14 should read "G(s)H(s)".

ſ

- Open-loop
 - Open-loop transfer function: $G(s)H(s) = \frac{K}{s(s+2)(s+5)}$
 - Open-loop poles: s = 0, -2, -5
 - Open-loop zeros: none
 - Closed-loop poles (characteristic equation):

 $1 + G(s)H(s) = 0 \implies s^3 + 7s^2 + 10s + K = 0$

• Starting points (K=0)

- At open-loop poles: s = 0, -2, -5

- Termination points $(K = \infty)$ - At open-loop zeros: m = 0, $s = \infty e^{-j\phi_1}, \infty e^{-j\phi_2}, \infty e^{-j\phi_3}$
- No. of distinct loci
 - Equal to the degree of the Char. Eq.: n = 3
- Asymptotes $(K \rightarrow \infty)$ - Angles: $\alpha_k = \frac{180^\circ + k360^\circ}{3}$, $\alpha_1 = 60^\circ$, $\alpha_2 = 180^\circ$, $\alpha_3 = 240^\circ$

- Asymptotes' real axis intercept $\sigma_a = \frac{\sum_{i=1}^{m} p_i}{n-m} = \frac{0-2-5}{3} = \frac{-7}{3} = -2.333$
- Root locus segments on the real axis
 - Segments between poles 0 & -2 and left of -5.
- Breakaway points

$$\frac{dK}{ds} = -\frac{d}{ds} \left(s^3 + 7s^2 + 10s \right) = -\left(3s^2 + 14s + 10 \right) = 0$$

$$\sigma_b = \frac{-14 \pm \sqrt{14^2 - 4 \times 3 \times 10}}{6} = \frac{-7 \pm \sqrt{19}}{3} = -3.7863, \ -0.8804$$

• Gain at marginal stability

Characteristic Equation: $s^3 + 7s^2 + 10s + K = 0$

Routh array:

(

$$s^0$$
 K
 0
 s^1
 $(70 - K)/7$
 0
 s^2
 7
 K
 s^3
 1
 10

Thus K = 0 or K = 70.

Oscillation frequency at marginal stability

Where is the imaginary axis intercept for K = 70?

Routh array:

ſ

Oscillation frequency at marginal stability

Where is the imaginary axis intercept for K = 70?

r

r

(

• Example 5.9 (Explanation)

Angle of departure θ_d from the pole at -2 + j3?

... select a point <u>on</u> the locus very close to the pole -2 + j3 (see the black dot).

- Example 5.9 (Explanation)
 - Angle of departure θ_d from the pole at -2+j3?

• Example 5.9 (Explanation)

Angle of departure θ_d from the pole at -2 + j3?

Angle criterion:

$$\theta_d + \theta_a + \theta_b = 180^\circ$$

$$\theta_d = 180^\circ - \theta_a - \theta_b$$
$$= 180^\circ - 123.69^\circ - 90^\circ$$
$$= -33.69^\circ$$

- Example 5.10 (Self-Study)
 - Open-loop: $G(s)H(s) = \frac{K}{s(s+2)(s+5)}\Big|_{K=1}$
 - PD Controller: $G_c(s) = K_1(s+a)$
 - Characteristic equation:

$$1 + \underbrace{G_c(s)G(s)H(s)}_{\text{Textbook } G(s)H(s)} = 1 + \frac{K_1(s+a)}{s(s+2)(s+5)}$$

- Specifications: PO < 5% and t_s < 2 sec

C

• Example 5.10 (Step responses)

r

Variations on the RH-Theme

• No. of poles to the right of other vertical lines

- To find the no. of poles to the right of the vertical line $s = \sigma_0$ substitute $(s \sigma_0)$ for *s* into the characteristic equation.
- Manipulate this into a polynomial in *s*.
- The no. of sign changes in the Routh Array for this new polynomial yields the no. of poles to the right of the vertical line $s = \sigma_0$.

Variations on the RH/RL-Theme

Closed-loop stability w.r.t. other parameters

– For any parameter $\pmb{\alpha}$ in the characteristic equation manipulate the characteristic equation into the form

$$1 + a \frac{\widetilde{N}(s)}{\widetilde{D}(s)} = 0 \implies \widetilde{D}(s) + a \widetilde{N}(s) = 0$$

- This is exactly in the form of the original characteristic equation but now with α as the variable gain.
- Sign changes in the 1st column of the Routh array yields the no. of poles in the RHP due to changes in the value of α .

Tutorial & Homework Exercises

- Tutorial Exercises
 - Burns, Example 5.16
 - Sketch the root locus for the system with char. eq. a. $s(s^2 + 12s + 45) + K = 0$,
 - b. s(s+p)+K=0 with p=4+a, K=20where $a \ge 0$ accounts for variation in the pole.
- Homework
 - Burns, Examples 5.9 and 5.11 & all relevant sections.

Conclusion

- Examples
- Root Locus Controller Design
- Variations on the Theme of the Root Locus
- Burns, Case study (Example 5.11) (Self-study!)
- Tutorial Exercises & Homework

Next Attraction! – Miss It & You'll Miss Out!

 Classical Design in the Frequency Domain (Burns, Chapter 6)

. . .

Thank you! Any Questions?