#### **CONTROL I**

**ELEN3016** 

#### Closed-Loop Control Systems

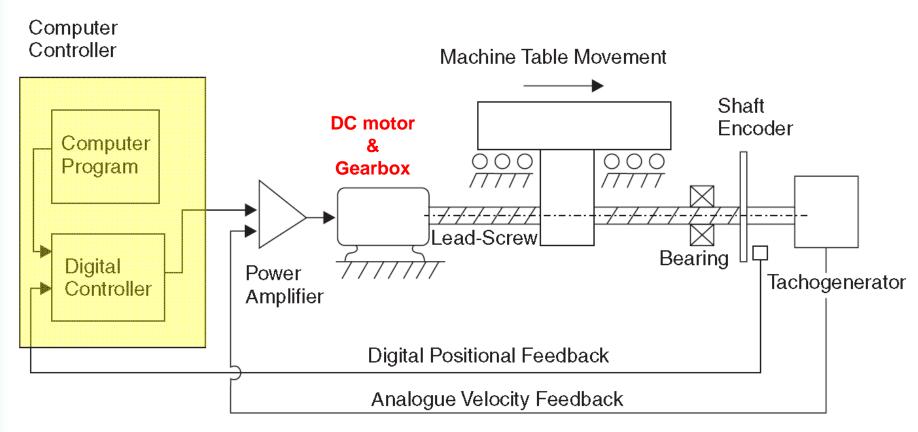
(Lecture 10)

#### Overview

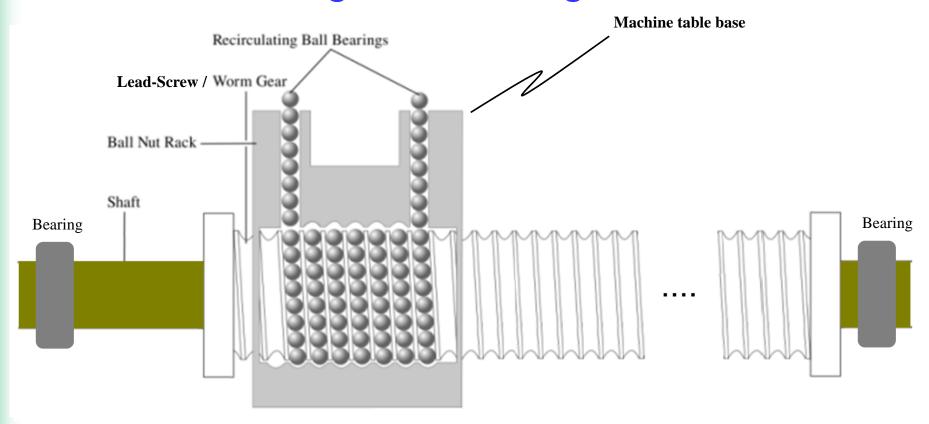
- First Things First!
- Case Study
- Tutorial Exercises & Homework

Next Attraction!

# First Things First!


- Laboratory Report Format & Assessment
  - Lab-brief being finalised detailing the above.
- Deadline(s)
  - To be finalised
- Laboratory Group Size
  - Ideally two students per group

# First Things First!


- Miss prints & corrections
  - Unit in Eq. (4.95) should be [V/V] and not [V/m].
  - Figure 4.31, machine table transfer function.

- Excellent physics paper!
  - G.B. Schmid, "An Up-To-Date Approach to Physics,"
     Am. J. Phys. 52(9), 794-799, September 1984.

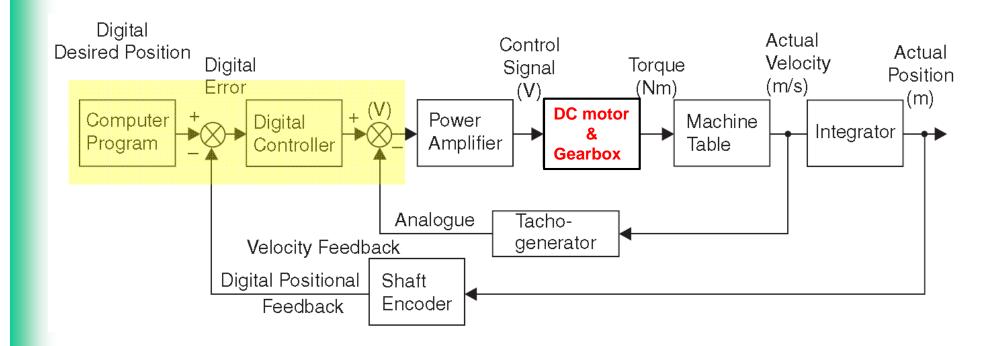
Electromechanical configuration



Re-circulating ball-bearings



Taper Roller Bearing




For bearing terminology visit: http://www.rbcbearings.com/tapered/components.htm

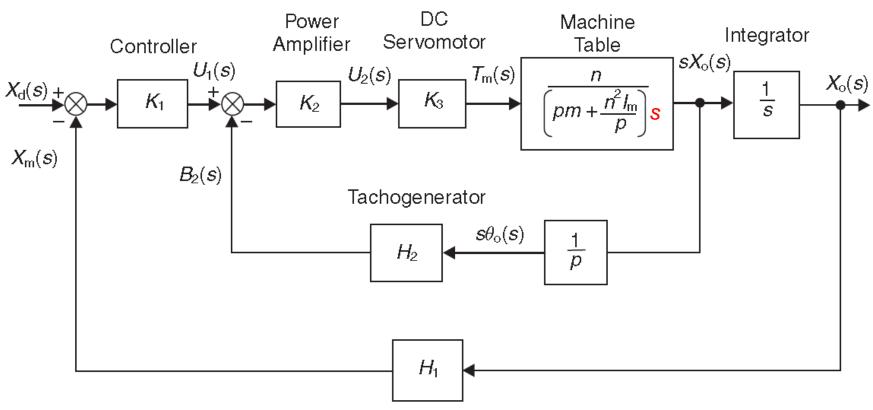
Ball Bearing



Block diagram



#### System properties


- The lead-screw, using re-circulating ball-bearings, is assumed to be virtually frictionless.
- To avoid overshoot the closed-loop damping ratio must no less than 1. (Why?)

#### Possible solutions

- Mechanical damping dashpot attached to the lead-screw
  - > Defeats the object of using a virtually frictionless system.
  - > Wastes energy dissipated energy converted into heat.

- Possible solutions (cont'd)
  - PD control
    - > No modification of the machine needed.
    - > Practical realisation requires additional filtering to reduce the effects of high frequency noise e.g. a lead-lag compensator.
  - Speed feedback sensor that measures either rotational speed of the lead-screw or the translational speed of the machine table.
    - > Generally requires installation & integration of a speed sensor into the existing CNC machine i.e. system modification.
    - > For the analysis we assume this will be the approach taken!

#### Modelling block diagram



Position Transducer

**Note:** No internal back emf feedback in the motor! Can you explain why not?

#### System Description

- Gear tooth reaction force: X(t)

- Gearbox gear ratio: 
$$n = \frac{b}{a} = \frac{\theta_m(t)}{\theta_o(t)}$$

- Distance travelled: 
$$a\theta_m(t) = b\theta_o(t)$$

- Lead-screw pitch: 
$$p = \frac{x_o(t)}{\theta_o(t)}$$

– Machine table mass: m

System Description (cont'd)

– Motor inertia:  $I_n$ 

- Generated motor torque:  $T_m(t)$ 

- Equivalent mass of  $I_m$ :  $\frac{n^2 I_m}{p}$  (Machine table side)

– Motor's field time constant:  $\frac{L_f}{R_f}$ 

#### **Tutorial Exercises & Homework**

#### Tutorial Exercise

 Derive the machine table's transfer function for the case study discussed.

#### Homework

- Example 4.6.1 (Burns, p. 92)
- Example 4.6.3 (Burns, p. 100)

#### Conclusion

- Case Study: Example 4.6.1 (p. 92)
- Example 4.6.2 (p. 97) (Self-study!)
- Example 4.6.3 (p. 100) (Self-study!)
- Tutorial Exercises & Homework

# Next Attraction! - Miss It & You'll Miss Out!

Stability of Dynamical Systems

• • •

# Thank you! Any Questions?