
Research Articles

Semantics, implementation and performance of dynamic access
lists for TCP/IP packet filtering

Scott Hazelhurst

School of Computer Science
University of the Witwatersrand, Johannesburg,

Private Bag 3, 2050 Wits, South Africa
scott@cs.wits.ac.za

Abstract

The use of IP filtering to improve system security is well established, and although limited in what it can achieve has
proved to be efficient and effective. In the design of a security policy there is always a trade-off between usability and
security. Static access lists make finding a balance particularly stark. Dynamic access lists would allow the rules to change
for short periods of time, and to allow local changes by non-experts. The network administrator can set basic security
guide-lines which allow certain basic services only. All other services are restricted, but users are able to request temporary
exceptions in order to allow additional access to the network. These exceptions are granted depending on the privileges of
the user. The paper presents and justifies a semantics for dynamic access lists. An efficient method of implementing the
dynamic semantics is proposed and experimentally validated. The experiments show that a useful dynamic semantics can
be implemented with small memory costs and modest time costs.
Keywords: firewalls, TCP/IP filtering, dynamic rules
CR Categories: C.2.0, C.2.3, C.2.6, K.6.5

1 Introduction

The use of IP filtering as a means of improving system se-
curity is well established. Although there are limitations
at what can be achieved doing relatively low-level filter-
ing, IP level filtering has proved to be efficient and effec-
tive [14].

The access lists that are used to implement IP filtering
contain rules that specify which packets should be allowed
to pass through the firewall. Access lists may last for sev-
eral years and so may be changed from time to time (rules
may be added or deleted, old rules changed, or the order of
the rules change). Nevertheless, an access list is relatively
static and change requires the intervention of the system
administrator.

The problem with a static access list is that the level
of security is relatively static. This becomes increasingly
a problem as the range and type of network travel in-
creases. Applications increasingly make transparent con-
nections across the internet (e.g. to check for updates, li-
cences, retrieve data). To allow all possible access all the
time creates potential hazards.

Striking the right balance between usability and secu-
rity is one of the key issues in network design. Using static
access lists makes choices in finding a balance particularly
stark. Restricting access means that legitimate use of the
network is prevented; allowing access means illegitimate
use may be allowed. A user may only need certain accesses
for 15 minutes a day (1% of the time), but when they need
the access they really need the access. On the other hand,

keeping access available 99% of the time when no bene-
fit accrues seems too liberal. One should only take a risk
when some benefit may result. As an analogy, after I do a
large grocery shopping I might leave my car door and front
door wide open while I trudge back and forth carrying gro-
cery packets because it makes the job easier and faster, but
I certainly don’t leave the doors open all the time.

The idea behind dynamic access lists is to allow the
rules to change for short periods of time, and to allow lo-
cal changes by non-experts. The network administrator
can set basic security guide-lines which allow certain basic
services only. All other services are restricted. However,
users are able to request temporary exceptions in order to
allow additional access to the network. These exceptions
are granted, depending on the privileges of the user.

Dynamic access lists have been used in Cisco routers
for some time [4]. What is being proposed here though
is a much more general framework for making access
lists dynamic, as well as a mechanism for efficient
implementation and management. One of the problems
with the current Cisco dynamic access list mechanism
is that it imposes a performance penalty (for exam-
ple, the lists cannot be compiled into lookup tables)
(http://www.cisco.com/univercd/cc/td/
doc/product/software/ios121/121newft/
121limit/121e/121e1/eturbacl.pdf ).

Support for the need for dynamic policies can be found
in the recent literature [10, 12, 13, 18]. I argue that the
advantage of dynamic access lists is that it allows more
flexibility, allowing defence in depth. In addition, we are

1



able to take into account different needs of different user
classes, rather than just physical location, and support mo-
bile computing.

Structure of the paper

Section 2 gives a basic introduction to TCP/IP filtering and
explains some of the relevant issues and techniques. Sec-
tion 3 surveys possible semantics for dynamic access lists
and proposes one which is argued makes intuitive sense
and is sound. Section 4 presents the outline of a proposed
protocol for allowing dynamic access. Section 5 describes
a method for representing access lists so that dynamic up-
date and look-up can be done efficiently. Section 6 presents
a set of experiments conducted to evaluate the performance
characteristics of the proposed semantics.

2 Background

2.1 Firewalling

Security can be provided at a number of different levels and
in different places. For example, we may secure individ-
ual computers or we may secure whole networks (though
potentially with what is proposed here, a more distributed
scheme could be considered). There are different advan-
tages and disadvantages of these different approaches – see
[14] for a discussion.

Firewalling can be done at different levels. For exam-
ple, proxies use application-layer information in control-
ling network connections. Because they can use high-level
information, they are able to make good quality decisions.
However, this imposes extra costs.

IP-level filtering is much simpler and therefore
cheaper, although this limits the intelligence of the filter-
ing. The use of user-classes in the dynamic approach may
increase the intelligence of the approach.

Even though the IP filtering is relatively efficient, the
cost of filtering may still be a significant bottle-neck [2].
Significant work has gone into improving the performance
of IP filtering [7, 8, 11, 17]. The fact that filtering is a
bottle-neck means that dynamic filtering must not intro-
duce significant extra costs.

2.2 IP filtering and Rule sets

TCP/IP filtering is a slightly misleading terminology since
in fact it means filtering using information found in the
internet, network and transport layer headers (depending
on the protocol suite). Typically the information that can
be found in the these headers is:

• source and target addresses of the packet;

• the protocol of the packet (e.g. udp, tcp, icmp, . . . );

• ports;

• certain flags (for example, a tcp packet contains flags
indicating status for connection control).

See a standard reference for more details (e.g. [20]). This
paper considers TCP/IP packets in particular, but the meth-
ods generalise to similar protocols.

Filter rules come in several formats; typically these
are proprietary formats. While the expressiveness and syn-
tax of the formats differ, the following generic description
gives a good feeling for what such rules sets look like. A
rule set consists of a list of rules of the form

if (condition) then action

where the action is either accept or reject.

Example: A rule in a rule list for a Cisco router [5] might
say something like:

access-list 101 permit tcp
20.9.17.8 0.0.0.0
121.11.127.20 0.0.0.0
range 23 27

This says that any TCP protocol packet coming from IP
address 20.9.17.8 destined for IP address 121.11.127.20 is
to be accepted provided the destination port address is in
the range23 . . . 27.

Masking: A rule can specify a range of addresses by us-
ing maskingfor both the source and destination addresses
(in the above, the masks were 0.0.0.0, which means no
masking). An address is actually a 32 bit number, which
is convenient for humans to express in the quad notation
(four numbers each in the range 0. . . 255). A mask is ex-
pressed similarly. If a “1” appears in the mask, then the
value of the corresponding bit in the address is ignored in
matching. In the above example, since the masks are all 0
the addresses must match exactly. But, if we had

20.9.17.8 0.0.0.255

as the source address, then any address with 20.9.17 as a
prefix would match. If

20.9.17.8 0.0.0.254

were the source, then anyevenaddress with 20.9.17 as a
prefix would match.

Matching a list of rules: The rules are searched one by
one to see whether the condition matches the incoming
packet: if it does, the packet is accepted or rejected de-
pending on the action (which will either be accept or re-
ject); if the condition does not match the rule, the search
continues with the following rules. If none of the rules
match, the packet is rejected.

Since the rules are checked in order, the order in which
they are specified is critical. Changing the order of the
rules could result in some packets that were previously re-
jected being accepted (and/orvice-versa).

This paper uses Cisco access-list format as the basis
specifying the rule set, but the methods proposed gener-
alise to other formats.

2



Research Articles

2.3 Comparison to existing work

The Cisco dynamic access list scheme allows the network
administrator to specify that certain rules aredynamic. The
default behaviour of these rules is to have no effect at all.
However, a user can log in to the router, authenticate itself
and then make these rules active.

Although useful, this scheme is not as general as the
framework described above. First, the network administra-
tor has to specify the dynamic access beforehand. Thus,
although an improvement over purely static access lists, it
is not completely dynamic: if the dynamic rules are not
made liberal enough then a user may not be able to get
access needed, whereas if they are made too liberal, then
when a dynamic rule is made active, too wide a window is
left open. Dynamic rules also appear to be treated differ-
ently to normal rules, which means that more sophisticated
dynamic rules will run into the problem of the interference
between ordering of rules and dynamic rules.

Details of the semantics and performance characteris-
tics of Cisco’s implementation is not available in the scien-
tific literature and I have been unable to find any quantita-
tive analysis.

There has been some recent work on policy or model-
based approaches to semantics [10, 12, 13, 18]. The aim
is to allow a very high level specification of system polices
and needs. The strength of this work is that it presents the
policy from the user or role perspective, rather than from
a computer or IP address perspective. The semantics pre-
sented in this paper would form a good intermediate se-
mantics between the high-level policy representations and
the low-level, technology specific format of access lists.
For example, the proposal that there should be an autho-
risation enforcement agent that monitored policy and net-
work conditions [18] could use the mechanisms proposed
in this paper for efficient implementation. The work cited
above does not address the question of efficient implemen-
tation, which is central to this paper. Thus, this paper is
complementary to that work.

3 The Semantics of Exceptions

The architecture of this dynamic access list proposal is that
the network will have

• a baselist of rules which protects the network, allows
only the very basic services, and sets policies for what
dynamic rules will be allowed; and

• dynamicrules which will be used to allow services
when needed and requested. The dynamic rules must
fit the policies of the base list.

There are a number of concerns: allowing users to ask
for dynamic access easily, providing the system adminis-
trator confidence that key security requirements will not be
broken, and understanding the effect of different rules. A
significant complication arises from the importance of the
order of rules in an access list to the semantics.

This section discusses why the ordering constraint is
an issue, presents principles for dynamic access list se-
mantics, and proposes possible semantics. The focus of
this section is on principle, not on performance, which is
dealt with later in the paper.

3.1 Principles of semantics

The following principles have guided the development of
the semantics proposed later.

1. The semantics should support flexible policies.

2. The behaviour of dynamic changes and the interaction
between the dynamic rules and the base rules must be
clearly understandable to the person maintaining the
base list, without knowledge of what the dynamic rules
are. The key points are

• the administrator must have confidence that the
security of their system will not be threatened;

• there must not be a significant extra burden
placed on the creation and maintenance of the
base list.

3. It must be possible for a user to request a dynamic ac-
cess rule without knowledge of the base rules or other
dynamic rules.

Of course, the firewall may not allow such a request if
it conflicts with security policy, but a non-expert user
(or a simple agent on behalf of a user) should be able
to make the requests.

4. Ideally, we should be able to use existing rule sets
without much change.

Efficiency is obviously also an important question, ad-
dressed in Section 5.

Limitations: A strength of this proposal is that it does
not require any changes to the networking protocols used
(e.g. IP). However, the downside of this is that IP addresses
are central to the security mechanism. With the scheme
proposed here the problem is somewhat ameliorated since
it allows different users with different privileges to control
different ports.

3.2 A simple semantics

At first, it might seem that dynamic rules can be imple-
mented just by considering the exceptions as an extension
of the base list. In this view, the exceptions are temporar-
ily pre-pended or appended to the base list. While this is
simple to implement and in some cases could have an un-
derstandable effect, it is highly problematic. It fails the
principle of supporting flexible policies as explained be-
low.

3



Suppose the extensions are pre-pended to the base list.
Then, because ordering is critical, all extensions will over-
ride all base rules: there is no way of ensuring that certain
rules are always obeyed.

Conversely, if the rules are appended then an excep-
tion can never over-ride any of the base rules: in effect,
an exception is only an exception to the default reject rule.
This is more desirable and useful than prepending, but it
reduces the flexibility of a security policy, and would be
likely to lead to a situation where the base rules are more
liberal than necessary in order to allow the exceptions to
have some use.

More sophisticated direct modification of the access
lists seems unlikely given the high-level of expertise re-
quired to make changes and the complexity of the inter-
play between rules. Inserting dynamic rules somewhere in
the middle of the list may give more flexibility but will not
be flexible enough, and be too difficult to understand the
effect.

3.3 The multiple list priority-based ap-
proach

The multiple list priority-based approach uses multiple rule
lists, ordered by priority. For each list the reject rules are
split into mandatory or flexible.

The security policy is succinctly expressed as:

A packetp is accepted by the firewall if it is ac-
cepted by rule listj and there exists no mandatory
reject rule in lists0 . . . j − 1 that matches it.

Dynamic changes can be effected by allowing users to
prepend accept rules to one of the lower-priority lists, de-
pending on the users’ privilege levels.

The semantics are acceptable when measured against
the principles of Section 3.1, and it allows an efficient im-
plementation. However, the disadvantage of this approach
is that it requires the duplication of rules. For example,
suppose that we wish to have as a default or base rule
that access to machinex is not allowed, but that users in
class 1 toi should be allowed to over-ride this rule, and
users in classi + 1 and above should not. Implementing
this requires flexible reject rules in the base list and in lists
1 . . . i−1, and a mandatory reject rule in listi. This prolif-
eration of rules will make administration much more diffi-
cult and increase the chance of errors.

3.4 The group-based approach

In the group-based approach (GBA), there is one base ac-
cess list andn exception lists (numbered0 . . . n − 1, as-
sumingn user groups). The base access list is the existing
access list, except that each reject rule has a set of associ-
ated group identifiers0 . . . n − 1. These group identifiers
indicate which groups are able to over-ride the reject rule.
Groups may be contained within other groups. The seman-
tics of the GBA are:

A packetp is accepted by the firewall if

1. It is accepted by the base list; or

2. It is accepted by some exception listj where
all reject rules in the base list that matchp
are labelled byj or by a super-group ofj.

Thus, if a rule in the base list is not labelled with any group
identifier then it cannot be over-ridden. I argue that this
semantics meets the conditions of Section 3.1. However,
one problem is how to deal with the implicit deny all rule
at the end of the list, since this matches all packets. The
solution adopted is to say that an exception can only be
placed in an exception listj if there is a deny rule labelled
j that covers the exception. It is this idea that the next
section explores.

3.5 Generalised Group Dynamic Access

The generalised priority list (GGDA) approach is similar
to GBA in that it uses a base list,n groups andn exception
lists. The difference is the semantics:

A packetp is accepted by the firewall if it is ac-
cepted by the base list or one of the exception lists.
The proviso is that an exception can only be added
to list j if

• There is a deny ruleγ labelledj (or a super-
group ofj) that matches the exception; and

• No other deny rule that matches the excep-
tion with a label other thanj or a super-
group ofj appears beforeγ in the list.

This is formalised in Section 5.2. The GGDA philosophy
is to keep as much as possible in the framework of the cur-
rent semantics of access lists, using the order of the rules
to help decide access. It is a generalisation of the current
semantics of access lists: a rule can be definitely yes or no,
or allow users with different levels of privilege to over-ride
them. Thus, users in groupj can see deny rules labelledj
as accepts or denies (depending on whether they want ad-
ditional access), whereas other users will see the rules as
denies. We shall see that this perspective of a generalised
semantics carries over strongly in the implementation.

The arguments for this semantics are:

1. Flexible policies are supported since by assigning sev-
eral priority levels for reject rules, the network ad-
ministrator can allow different classes of user different
abilities to request dynamic access.

2. Interaction between the base list and the exceptions is
clear since (a) the normal semantics of the access lists
is disturbed very little; and (b) the use of group mem-
bership for the reject rules makes it clear what different
classes of users can and can’t do.

3. Users do not need to know what the base rules are in
making a request for dynamic access.

4. Existing rule sets can be used as-is. Dynamic access
can then be implemented over time by assigning group
membership. There is no need for radical change.

4



Research Articles

The efficient implementation of the semantics is discussed
in Section 5.

3.6 Example

Here we look at a simple example shown in Figure 1. The
format used is similar to the Cisco access list format; the
number at the beginning of each line is just used for ref-
erence in this explanation. The example gives rules for a
subnet 128.128.128. The machine 128.128.128.15 is a spe-
cial server; the other machines in the range 128.128.128.0
to 128.128.128.127 are for staff; machines in the range
128.128.128.128 to 128.128.128.255 are for students. In
this example, group 0 is thestaff group, group 1 thestu-
dentgroup, and group 2 theall group, which contains both
groups 0 and 1.

Rule 0 says that we accept tcp connections to the ma-
chine 15 on port 88. Rule 1 says that we deny (with no
exceptions allowed) all tcp connections to machine 15 on
any port. Since rules are examined in order the combined
effect of these two rules is that tcp connections to machine
15 are accepted on port 88 only. Rules 2 and 3 say that on
all machines on the subnet we accept tcp connections on
port 88 and ports in the range 32000 to 65535. (Since rules
0 and 1 come before rules 2 and 3, rules 2 and 3 will not af-
fect machine 15 since we have denied access to ports other
than port 88 on machine 15). Rule 4 denies tcp connec-
tions to any machine on the subnet to any port in the range
0 through 87 and no derogation from this rule is allowed.

Rule 5 says that we deny tcp connections to
any of the staff machines (range 128.128.128.128 to
128.128.128.255) on any port numbered 89 or higher.
However, we allow members of the staff group to request
exceptions to this rule. Note there is some overlap between
this rule and previous rules: in this overlap the previous
rules take priority because they come first.

Rule 6 says that we deny tcp connections to any stu-
dent machines on any port numbered less than 16000.
(Since rule 3 comes first, connections to port 88 are still
allowed). Rule 7 says that we deny any connections to
student machines on ports with a number greater than or
equal to 16000. Members of the student group are allowed
to request exceptions to this rule. (Connections to ports
≥ 32000 are still allowed since rule 4 comes first.)

Finally, rule 8 denies any other packets. However, any
member of either the staff or student group can ask for ex-
ceptions.

Note, that without any exceptions, the semantics of the
access list is unchanged from the standard semantics.

Now, let’s look at the effect of exceptions. Suppose we
have the exception lists as shown in Figure 2; the number-
ing of exception lists and groups correspond.

Exception 0.0 allows tcp connections to be made to
port 100 on machine 1. Any packets that come to this port
will be accepted because they are accepted by exception
list 0 and the only rules that deny access to this port are
rules 5 and 8. Both allow exceptions to be requested by
members of group 0 and so this exception can be honoured.

Exception 0.1 purports to allow tcp exceptions to ports
0 through 90 on machine 1. However, packets that come
to ports 0 through 87 will not be enabled by this exception
since they are rejected by rule 4 which does not allow dero-
gations. TCP packets going to port 88 were in any event
allowed by rule 3. Packets going to port 89 and 90 will
be allowed by the exception since the rules that deny ac-
cess to this port (5 and 8) allow exceptions to be made by
members of group 0.

Exception 0.2 purports to allow packets going to port
16000 on machine 129. Under the GBA, this would not
be allowed since although rule 5 appears to allow the ex-
ception, rule 7 effectively denies it. On the other hand, the
GGDA semantics would allow it since rule 5 comes before
rule 7. I argue that this follows the normal semantics of
access lists and so will be more understandable to admin-
istrators.

Exception 1.0 purports to allow tcp connections to port
100 on machine 2. This has no effect, however, since rule 5
denies access to this port and as the rule only allows dero-
gations by staff member, only exceptions in exception list
0 can over-ride it. (In fact, under the GGDA semantics, this
exception wouldn’t even be allowed to be put in the list.)

Exception 1.1 does have effect though since it allows
access to port 18000 on machine 129 and the relevant deny
rule (7) is labelled group 1 (and hence can be over-ridden
in exception list 1). Note that access to port 16000 would
not be allowed because of rule (5).

Similarly, exception 1.2 will allow icmp packets to
reach machine 129 since the relevant deny rule (8) is la-
belled 2 (theall group).

Exception 2.0 purports to allow tcp connections to port
16000 on machine 130. However, as rule 7 denies such
connections and is labelled group 1, exceptions that over-
ride rule 8 must be in exception list 1. However, exception
2.1 does allow icmp access to machine 130 since rule 8 is
labelled 2.

Notes

• If the groups are set up in a strictly hierarchical way,
the group-based approach corresponds to a priority-
based one.

• Shouldacceptrules also have priorities and allow ex-
ceptional denies? This has the appeal of symmetry,
and would allow extra functionality (for example, to
allow an authorisation enforcement agent to take ac-
tion when intrusion was detected). There are no in-
herent implementation issues why this should not be
supported, but it needs some thought.

4 User-Firewall Interaction Protocol

This section proposes a protocol for dynamic access list
by specifying how communication between user processes
and the firewall takes place. When a user (which might
be an agent acting on behalf of a human, rather than a hu-

5



0: accept tcp 0.0.0.0 255.255.255.255 128.128.128.15 0.0.0.0 eq 88
1: deny tcp 0.0.0.0 255.255.255.255 128.128.128.15 0.0.0.0
2: accept tcp 0.0.0.0 255.255.255.255 128.128.128.0 0.0.0.255 eq 88
3: accept tcp 0.0.0.0 255.255.255.255 128.128.128.0 0.0.0.255 ge 32000
4: deny tcp 0.0.0.0 255.255.255.255 128.128.128.0 0.0.0.255 range 0 87
5: deny 0 tcp 0.0.0.0 255.255.255.255 128.128.128.128 0.0.0.127 range 89 17000
6: deny tcp 0.0.0.0 255.255.255.255 128.128.128.128 0.0.0.127 lt 16000
7: deny 1 tcp 0.0.0.0 255.255.255.255 128.128.128.128 0.0.0.127 ge 16000
8: deny 2 everything

Figure 1: Simple example dynamic base list
.

Exception list 0 (staff)
0.0 accept tcp 0.0.0.0 255.255.255.255 128.128.128.1 0.0.0.0 eq 100
0.1 accept tcp 0.0.0.0 255.255.255.255 128.128.128.1 0.0.0.0 range 0 90
0.2 accept tcp 0.0.0.0 255.255.255.255 128.128.128.129 0.0.0.0 eq 16000

Exception list 1 (student)
1.0 accept tcp 0.0.0.0 255.255.255.255 128.128.128.2 0.0.0.0 eq 100
1.1 accept tcp 0.0.0.0 255.255.255.255 128.128.128.129 0.0.0.0 eq 18000
1.2 accept icmp 0.0.0.0 255.255.255.255 128.128.128.129 0.0.0.0

Exception list 2 (all)
2.0 accept tcp 0.0.0.0 255.255.255.255 128.128.128.130 0.0.0.0 eq 16000
2.1 accept icmp 0.0.0.0 255.255.255.255 128.128.128.130 0.0.0.0

Figure 2: Exception Lists

man) wishes to ask for dynamic access, it sends a request
to the firewall. The firewall logs and validates the request,
checks to see whether the request can be fulfilled and then
responds to the user. This section describes this commu-
nication in more detail. How the firewall maintains the
requests, performs updates, and does look-ups is covered
in Section 5.

4.1 Request for dynamic access

A request for dynamic access takes four steps:

• The user sends a request to the firewall asking for ac-
cess;

• The firewall sends back a response indicating to what
degree the access can be given;

• The user then sends a message to confirm whether it
wants the access given.

• If the firewall receives the confirmation within a given
time interval, the exception is made; otherwise the ex-
ception is not made.

These are now explained in more detail.

First step – asking for access: The user sends a packet
to the firewall asking for access to be given. The packet is
sent as a UDP packet to a well-known port on the firewall,
and contains the following information:

• Originating IP address and UDP port (part of the
IP/UDP headers).

• User identification: this must enable the firewall to
identify the group of the user.

• Access required: this would be a list of accept rules
indicating what access is wanted.

• Expiry time: The user specifies for how long the ex-
ception should be enabled.

Firewall response: When the firewall receives there-
questpacket, it validates the user and determines the group
membership. It then examines the update request and
determines using the techniques discussed in Section 5
whether the request can be met: the request could be met
completely, partially or not at all. At the same time, the
firewall inserts the update in a queue of pending excep-
tions.

There are number of open implementation decisions:
should the firewall accept update changes from outside or
only from inside? How are users identified? It may be the
userid of a user that the firewall knows about (it could have
its own database or use NIS), or it could be a capability-
based system. The identification could be authenticated by
digital signature. This and other messages in the exchange
may or may not be encrypted.

What information is returned if the request can only
be met partially is another implementation decision. In the
approach proposed in Section 5 a full description will be
returned. However, there might be reason just responding
with a rejector allow.

Confirmation by user: If the user receives arejectmes-
sage, then it has to reconsider what it wants. If the user

6



Research Articles

receives anallow message, it decides whether it wishes
to use the update, and if so it sends back to the firewall
a confirmmessage together with the unique ID. This step
ensures that the firewall only implements changes that the
user really wants. It also helps reduce the chance of spoof-
ing attacks on the firewall.

Firewall implements the exception: When the firewall
receives theconfirmrequest it removes the update request
from the pending queue, and adds it to the appropriate ex-
ception list, timestamping the update as it does so.

Periodically, the update queue is scanned and old re-
quests are purged. A user may wish to extend the life-time
of an existing exception. This could be done with arenew
mechanism.

4.2 Undoing an update

Since the access list is supposed to be dynamic, it must
be possible to undo the change. This can be done easily
by deleting the exception. There are two proposed mecha-
nisms for this:

• The user sends adeleterequest to the firewall with the
unique ID of the update. The firewall authenticates the
request and then deletes the update.

• The firewall periodically checks the exceptions and
when an exception has expired (the time since it was
added to the exception list longer than the expiry
time associated with the exception), the exception is
deleted.

Other mechanisms are possible. For example, the firewall
could monitor the traffic associated with the exception and
when it detects that there has been no traffic for some pe-
riod then the exception is deleted. However, this is likely
to be considerably more complex and heavy-weight than
the proposed method here.

5 An implementation mechanism for
dynamic lists

As performance has been raised as a problem with related
work, and the approach proposed here is a much more gen-
eral framework, the potential negative effects on perfor-
mance clearly need attention.

The following principles and assumptions guide the
implementation mechanism proposed here. The principles
are listed in descending order of importance:

• The cost of doing look-up for packets that are not af-
fected by dynamic update rules should not see signifi-
cant performance degradation;

• There will be traffic associated with each update rule
and so the cost of look-up for exceptional packets must
be small;

• The cost of updating and undoing updates must be
small (though as this happens relatively rarely com-
pared to packet traffic, the cost is not that critical).

This section is structured as follows: Section 5.1
discusses the basic method for representing access lists.
The GGDA semantics is then formalised. These are the
most interesting semantics; the other semantics can be for-
malised in similar ways. Section 5.2 presents the method
of efficiently performing updates to the access list and per-
forming lookup; and Section 5.4 shows how undoing up-
dates can be performed.

5.1 Basic Representation of Access Lists

The chosen method for representing an access list is as a
single (rather large) boolean expression. As described in
Section 2 each rule in the access list is a condition on the
bits in the packet header, and hence if we represent each
bit in the packet header with a boolean variable, we can
represent the condition as a boolean expression over these
variables. Given a packet to filter, we give the variables in
the expression their values as given by the bits in the packet
header. The packet is accepted exactly when the boolean
expression evaluates to true.

The detailed mechanics of this translation are be-
yond the scope of this paper. The important point is that
these boolean expressions can be efficiently represented
using binary decision diagrams (BDDs) [3]. See previous
work [8, 9] for a detailed explanation of how this is done.
The work of Attar [1] and Sinnappan [15] shows that this
method of representing access lists is a very compact repre-
sentation and that look-up can be performed competitively
(with respect to other methods) in both software and hard-
ware. What particularly made this representation scheme
appear promising for dynamic access lists were the results
that (a) the cost of lookup is robust in the number of ac-
cess rules and (b) the variation on look-up cost is very low.
Thus, we believe that this implementation will not lead to
a significant performance penalty.

Besides the potential implementation advantages, the
logical representation gives a sound, understandable for-
mal semantics for dynamic access list. These are hu-
man understandable and automatic tools can be used for
analysing them.

5.2 Representation of base list and excep-
tions: GGDA

The GGDA has a precise formal semantics. The exceptions
that can be made to an access list can be described by a
boolean expression which is constructed in the following
way.

• Let the access listB consist of the rules〈r1, . . . , rn〉.
Let E(B, g) be a boolean function which describes the
exceptions which a user from groupg can request.

Let φ(r) be the boolean expression associated with
rule r, andg(r) be the label(s) of the ruler.

7



LetφB be the boolean expression representing the base
access list.

Let φA be the boolean expression representing the ac-
cess list together with exceptions.

For the base case of an empty list,E(〈〉, g) def= f . In gen-
eral, we defineE(〈r1, . . . , rn〉, g) depending on whether
the first rule is an accept or reject rule. Ifr1 is an accept
rule, then

E(〈r1, . . . , rn〉, g) def= E(〈r2, . . . , rn〉, g)

since accept rules have no effect on exceptions. Ifr1 is a
reject rule:

E(〈r1, . . . , rn〉, g) def=
(g ∈ g(r1)) ∧ (φ(r1) ∨ EB(〈r2, . . . , rn〉, g)) ∨
(g 6∈ g(r1)) ∧ ¬φ(r1) ∧ EB(〈r2, . . . , rn〉, g)

This says that the exceptions that someone from group
g can request from the access list withr1 as the first rule
are

• if g is a member of a group labelled byr1 then any-
thing that is covered byr1, or any exception that such
a user can request of the rest of the list; or

• if g is not a member of the group labelled byr1 then
anything that isnotcovered by the condition ofr1 and
is permitted to such a user by the rest of the list.

We also keep for each group,j, a boolean expression,εj

representing the exceptions that have been requested by
groupj, whether these exceptions are allowed or not.
Under the GGDA semantics given in Section 3.5 (on
page 4) the boolean expression that represents a base ac-
cess list andn exception lists is:

φA
def= φB ∨ (∨n−1

i=0 εi ∧ E(B, i)) (1)

The one concern from an efficiency point of view is that
we have to storeE(B, i) for all i. However, this is un-
likely to be a problem for several reasons. First, the size
of the boolean representation of access lists is small and so
keeping many copies is unlikely to be a problem. More-
over, there are likely to be many shared structures in the
BDDs that represent the different boolean expressions and
BDD managers can efficiently share these structures. Fi-
nally, if there really were a problem (say we had hundreds
of groups, though unlikely) we could easily represent all
the E(B, i) efficiently and compactly with one symbolic
expression in the following way:

• Introducedlog ne boolean variableg1, . . . gn;

• E(B, i) can now be computed symbolically using the
rules above and represented using a BDD including the
gi variables.

In the discussion below, we only consider GGDA. How-
ever, it would be easy to make the necessary modifications
to change to GBA or other approaches.

5.3 Update process

The firewall keeps the following information:

• φB , the representation of the base list;

• For each update requestu, φu, the boolean expression
representing the exception, the ID of the request, ex-
piry time and the group of the originator of the request;

The update requests are stored in a manner so that they
can efficiently be accessed by ID number, by expiry
time, and by group number.

• For eachi, E(B, i), the exception permitted by the base
list for groupi;

• For eachi, εi, the exceptions requested by groupi;

Update request received: When a new updateu in
terms of the protocol described in Section 4 arrives with
originator priorityj, the following is done:

• φu is computed, the boolean expression representing
u;

• φu ∧ E(B, j) is computed: This represents which ex-
ceptions that a user of this level of priority can be
granted.

– If φu ∧ E(B, j) = f , then none of the exceptions
can be granted;

– If φu∧E(B, j) = φu, then all the exceptions can
be granted;

– Otherwise only some of the requests can be
granted.

• If none of the exceptions can be granted, the request is
deleted and the user is sent arejectmessage.

• Otherwise the user can be sent anallow full or allow
partial message, and the request is put on the pending
list. In the case of anallow partial message various
types of information can be returned to the user. The
most useful would be tabular representation ofφu ∧
E(B, j). An algorithm for presenting this is described
in [8].

Confirm message received: When the firewall receives
aconfirmmessage for updateu, the following happens:

• The update is stored with the associated information in
an easily accessible form as described above;

• εj is updated:εj ← εj ∨ φu ∧ E(B, j);

• φA is recomputed according to Equation 2 by comput-
ing φA ← φA ∨ φu ∧ E(B, j).

Other semantics

The logical representation allows other semantics to be for-
malised in the same way. The GBA semantics is given in
the appendix to illustrate this point.

8



Research Articles

5.4 Undoing updates

In principle, undoing an exception is straight-forward.
When an exception of priorityj is undone,

• The exception is removed from the list of active ex-
ceptions;

• εj is recomputed;

• φA is recomputed according to Equation 1.

Although a simple inspection of the undo algorithm
may give the appearance that undoing may be more ex-
pensive than creating the exceptions because there seems
to be more computation to be done, there are a number of
mitigating factors:

• Undoing is unlikely to be time-critical (i.e. if it takes
a few seconds extra to undo the exception, there will
be no serious consequences). Thus, we only need to
consider the cost in terms of the load it places on the
server, and latency is not an issue. And since it is not
critical, undoing can be done as a low-priority process.

• The effective use caching of results by the BDD man-
ager means that in some cases the results of the com-
putation are already available.

However, the cost of undoing is likely to be the critical
factor in the performance of this approach and so will be
examined in the next section.

6 Experiments

This section presents an experimental evaluation of dy-
namic access lists. The following measurements were
made.

• Memory costs. Given previous results, memory is not
expected to be a constraint, given that the BDD rep-
resentations are very compact. Nevertheless, this is
something that needs to be confirmed.

• The time to make an exception.

• The time to cancel an exception.

• The effect of exceptions on lookup costs for unrelated
packets.

• The effect of exceptions on lookup costs packets that
are affected by the exceptions.

All experimentation was performed on an 800MHz Pen-
tium III processor with 500MB of RAM.

6.1 Implementation

A prototype implementation of the semantics of Section
5.2 has been built. This is a C program, which uses the
CUDD BDD package [16]. The prototype can take a base

list, an exception request queue, a list of groups and rela-
tions between groups and construct the base and exception
list BDDs, as well as compute the overall BDD. The ex-
ception request queue contains a list of exception requests
which can either be requests to make exceptions (in which
case it contains the exception label as well as the exception
itself) or it can be a request to undo the exception.

The prototype takes a given packet header trace and
then successively performs a look-up, returning the look-
up results as well as performance statistics. For the ex-
periments below, we wish to focus solely on lookup costs
(since other packet handling costs are not affected by this
proposal), so we do not interface with a real network, but
rather take as input a file of appropriate packet headers.

There is also an auxiliary program that can be used to
generate packet traces of different types. We have imple-
mented an algorithm that takes the BDDs that represent a
base list and exceptions, and generates packets according
to some criteria (e.g. generate packets that matchthese
rules but notthose). This proves very useful for experi-
mentation.

6.2 Experimental data

Two rule sets were used as base sets. These are rule sets
we generated in previous research for experimentation pur-
pose. They are rule sets designed for different artificial but
realistic networks. The virtue of using artificial sets is that
it allows us to control for rule size without changing the
semantics of the rules (see [15] for a discussion on the ap-
proach). One of the advantages is that we can test different
scenarios and so investigate the robustness of the approach.

The set R-A was used as the main rule set. It is a list
of 500 rules and was used as-is, without any changes. It
should be noted that a number of the rules were redundant.
From this set, the set R-A-1 was created where most of
the permit rules had been turned into deny rules for which
exceptions could be requested. The following exception
lists were made:

• Exc-A.1: a set of 50 exceptions (a few exceptions to a
number of the deny rules)

• Exc-A.2: a set of 100 exceptions (many exceptions to
a few of the rules).

• Exc-A.3: the combination of the rules.

These exceptions were constructed to model different
realistic situations. For example, in the base list a common
service was listed with adeny, and the exceptions then al-
lowed access to specific users or ports.

A second base rule set, R-B (330 rules), allowed us to
test more complex cases. A set of 300 rules for a realis-
tic network was edited to ensure that no rules were redun-
dant as well as to add significant complexity to some cases.
About 30 complex and unusual rules were added in order
to see how the method would work for much more com-
plex systems and to test corner cases. This editing tripled
the memory complexity of the BDD representation of the

9



resulting lists. From this base list, two other lists were gen-
erated:

• Set R-B-1: the original list was modified by changing
all but 10 permit rules to deny rules. These deny rules
were labelled with a different label to that of the origi-
nal deny rules: these rules became the rules for which
exceptions could be asked.

This is intended as a realistic test case: it would make
sense for the firewall to have only a few permanent
permit rules and then use the exception mechanism to
open holes in the firewall when needed.

• Set R-B-2: the original list was modified by changing
20% of the permit rules to deny rules. These deny
rules were labelled with a different label to that of the
original deny rules as above. This tests more extreme
cases.

The following exception lists were used:

• Exc-B.1: a set of 50 exceptions requesting a range of
different source, destination, and port requests.

• Exc-B.2: a set of 50 exceptions requesting POP ac-
cess for a particular destination address and port from
a range of different source and port addresses (these
exceptions were to the labelled deny rules in R-B-1/2).

• Exc-B.3: Exc-B.1 plus Exc-B.2 combined.

For each test case Exc-X.y, we also ran a test case Exc-
X.y/C in which all the exceptions were first created, and
then cancelled. The order of cancellation was pseudo-
random and so not in the same order as the creation.

6.3 Memory usage

Table 1 shows the cost of representing the access lists and
exception lists. For each access list, the column headed
baseshows the memory cost of representing the access list,
and the column headed Exc-Xy shows the cost of repre-
senting the access list and all the exceptions in list Exc-Xy.
The figures shown are the number of BDD nodes required
to represent the access list: each node could comfortably
be stored in 32 bytes (so the total memory usage would be
less than 500K for the most complex list used). Note that
the rows labelled R-A and R-B are given in order to show
cost of building the original base list. No cost of making
exceptions is given since no exceptions are permitted for
these lists; exceptions are only permitted for the derived
lists.

6.4 Time cost of constructing the access list
and exceptions

Table 2 shows the cost of creating the access exception
lists and undoing them. For each access list the column
headedBaseis the cost of building the entire access list.
The columns labelled Exc-Xy show the average cost in mi-
croseconds of making the exceptions in list Exc-Xy. The

Test case Base Exc-A1 Exc-A2 Exc-A3

R-A 2851
R-A-1 2124 2706 2900 3482

Test case Base Exc-B1 Exc-B2 Exc-B3
R-B 10373
R-B-1 2096 3357 3436 4697
R-B-2 9299 11143 10647 12635

Table 1: Memory costs of representing access and excep-
tion lists

columns labelled Exc-Xy/C show the average cost in mi-
croseconds of making and undoing the exceptions in list
Exc-Xy/C.

These results show that the cost of making or undo-
ing an exception is less than a millisecond and so would
not place any overhead load on the firewall itself. The in-
creased latency (bearing in mind that the latency penalty
only has to be paid at the beginning of a session) is negli-
gible.

6.5 Time Cost of Lookup

The cost of lookup is very sensitive to the packets be-
ing matched. Previous research has shown that the pro-
file of costs is very different for synthetic and trace data
[1]. There are many situations where the worst case per-
formance is not good, but since the worst case is unlikely
to occur, provided the average case is acceptable the over-
all performance will be acceptable. Therefore, in general,
average case analysis is often the correct analysis to do.

However, here, the worst case analysis is appropri-
ate. For dynamic access lists, the worst case can be ex-
pected to occur relatively often. A typical scenario is a
case where the network administrator might wish to allow
a wide range of access to all machines on the subnet (e.g.
allow ssh access to all machines). Typically, the path in a
BDD that would ‘represent’ such a rule would have a depth
of about 46. In a dynamic access list, rather than having
one general rule covering all ssh accesses, we would have
one exception for each required ssh access. Because the
exceptions are much more specific, the depth of the path
representing each exception might have a depth of 72 or
88. In other words, the lookup time could realistically dou-
ble. More extreme cases could be considered. Also, if it
can be shown that the worst case performance is acceptable
then the performance case for dynamic access lists can be
made.

The good news is that the BDD representation has the
useful property that for a fixed rule format, there is a worst
case independent of the size of the access list or the cor-
responding BDD representation. At worst, the depth of a
BDD (and hence the number of steps required for BDD
lookup) is the number of bits which are used in filtering.
This property must be emphasised because it enables us to
give an accurate upper bound on the cost of filtering.

In all the experimentation that was done, the worst
case penalty on the cost of lookup time was just over 100%,

10



Research Articles

Test case Base Exc-A1 Exc-A1/C Exc-A2 Exc-A2/C Exc-A3 Exc-A3/C
R-A 353ms
R-A-1 384ms 780µs 647µs 695µs 439µs 653µs 646µs
Test case Base Exc-B1 Exc-B1/C Exc-B2 Exc-B2/C Exc-B3 Exc-B3/C
R-B 318ms
R-B-1 382ms 947µs 540µs 633µs 480µs 839µs 511µs
R-B-2 408ms 887µs 527µs 682µs 492µs 815µs 502µs

Table 2: Cost of creating exception lists and undoing them

and the maximum lookup time was 2.1µs.
This results means that in the worst case we can do

approximately 500k lookups per second using dynamic ac-
cess lists. Bearing in mind that the minimum size IP packet
over ethernet is about 200 bits, this translates into support-
ing a bit rate of about 100Mb/s assuming all packets are
minimum size. Note that this is the lookup time only and
does not include the other costs involved in network pro-
cessing (these costs are fixed and not dependant on whether
dynamic access lists are used). To put this into the context,
the main router at the University of the Witwatersrand re-
ceives on average about 6200 packets per second at peak-
time (measured from 09:00-15:00 on a Monday in the mid-
dle of term-time; this includes all incoming traffic to the
University).

Detailed analysis: The detailed results of the experi-
mentation are shown below as it is useful to see a finer
picture of the costs — though it must be emphasised that
from a performance point of view dynamic access lists
must stand or fall on the absolute worst case figures given
above.

Each experiment shows the comparison for a particular
data set (base, exception list, packet trace) the difference in
lookup for the given packet trace between using the static
list and the dynamic list.

For the table below, the column headed∆ shows the
difference in the average lookup cost between the static
and dynamic list. This is useful to see, but as discussed
previously is not the important figure, and we focus on
the number of cases in which the lookup costs more. Due
to difficulty in timing very small times accurately (partic-
ularly in face of garbage collection which distorts some
runs), we use the depth of the path in the BDD as a proxy
for time. The only thing that could make this a bad proxy
in production runs is cache behaviour; however, the BDD
sizes are very small and simple techniques could easily fit
them in at least level 2 cache. The column headedL[x, y)
shows the number of packets and the percentage of pack-
ets in the run for which the penalty of doing a lookup was
greater than or equal tox% and less thany%. Note that
the table only shows the packets where performance was
worse (since that is what we are worried about); in some
of the experiments, the vast majority of packets saw im-
proved performance.

Simulated packets were used for computing lookup
costs, as it is easier to produce worst case costs with sim-

ulated data than real data. The following data sets were
used:

• R-A-1/Exc-Ax.0: For each rule in the rule set R-A, we
generated 100 random packets that matched that rule,
but no other rule above it in the rule set.

• R-A-1/Exc-Ax.1: For each exception requested, we
generated 100 random packets that matched that ex-
ception but none of the mandatory deny rules or other
exceptions above it in set R-A. This is an important
data set because it allows us to directly examine the
penalty paid for dynamic lists: since all these packets
are accepted by both the base list, and by the dynamic
list plus exceptions, we can compare the costs directly.

• R-A-1/Exc-Ax.2: For each permit rule in the set R-A,
we generated 100 random packets that match that rule.
This enables us to measure the penalty of dynamic ac-
cess lists for those packets which are not affected (se-
mantically) by the dynamic access lists.

• We generated a single packet trace for all the cases, R-
B-x/Exc-By. This trace consisted of 100 random pack-
ets for each rule in R-B, which matched that rule but
no rules above it in the set.

• As rule set R-B-2 differed from the other dynamic lists
in that most of the base list’s permit rules remained
permit rules in the dynamic list, we also created:

– R-B-2/Exc-B2.1: For each exception we gener-
ated 100 random packets that matched that ex-
ception but no mandatory deny rule nor any ex-
ception above it.

– R-B-2/Exc-B2.2: For each permit rule in R-B-2,
generated 100 random packets that matched that
permit rule.

The most important result of the detailed experiment was
that we can reliably estimate the maximum cost of lookup
at 2.1µs. In the worst case, the penalty was just over 100%,
as the theoretical analysis predicted. This result shows that
the extra workload penalty on the firewall is reasonable and
the extra latency is trivial.
The average time for the trials is only given to show that
there are no unexpected negative timing penalties, and it
is important to recognise that the test packets were chosen
to be representative of the lookup scenarios, and arenot
reflective of typical workloads.

11



Lists ∆ L[0,5) L[5,10) L[10,20) L[20,30) L[30,40) L[40,∞)
R-A-1/Exc-A1.0 -40% 13803 (52%) 29 (0.1%) 4(0.2%) 6%(0.0%) 0 (0.0%) 0 (0.0%)
R-A-1/Exc-A1.1 6 22914 (92%) 6 (0.0%) 2(0.0%) 0(0.0%) 200 (0.8%) 1001 (4.0%)
R-A-1/Exc-A1.2 -5% 1300 (87%) 4 (0.3%) 1(0.1%) 0(0.0%) 0 (0.0%) 0 (0.0%)
R-A-1/Exc-A2.0 -35% 22383(61.7%) 113 (0.3%) 253(0.3%) 7(0.0%) 103 (0.3%) 420 (1.2%)
R-A-1/Exc-A2.1 40% 0 (0.0%) 0 (0.0%) 0(0.0%) 300(3.2%) 5800(61.1%) 3400(35.8%)
R-A-1/Exc-A2.2 -5% 1300(86.7%) 4 (0.3%) 1(0.1%) 0(0.0%) 0 (0.0%) 0 (0.0%)
R-B-1/Exc-B1 -44% 1172 (3.5%) 35 (0.1%) 82(0.3%) 1(0.0%) 0 (0.0%) 0 (0.0%)
R-B-1/Exc-B2 -44% 1144 (3.5%) 50 (0.2%) 93(0.3%) 2(0.0%) 1 (0.0%) 1 (0.0%)
R-B-1/Exc-B3 -44% 1143 (3.5%) 59 (0.2%) 93(0.3%) 2(0.0%) 0 (0.0%) 1 (0.0%)
R-B-2/Exc-B1 -4% 29676 (90%) 372 (1.1%) 144(0.4%) 5(0.2%) 1 (0.0%) 0 (0.0%)
R-B-2/Exc-B2 -4% 29631 (90%) 310 (0.9%) 234(0.7%) 11(0.0%) 6 (0.0%) 7 (0.0%)
R-B-2/Exc-B2.1 -23% 1751 (49%) 24 (0.7%) 2(0.1%) 0(0.0%) 0 (0.0%) 0 (0.0%)
R-B-2/Exc-B2.2 -24% 1752 (49%) 10 (0.3%) 11(0.3%) 1(0.0%) 1 (0.0%) 0 (0.0%)
R-B-2/Exc-B3 -4% 29319 (89%) 602(1.81%) 262(0.8%) 5(0.2%) 7 (0.0%) 7 (0.0%)

Table 3: Look up costs

Many of the results are very positive. For example, ex-
periments Exc-A1.2 and Exc-B2.2 show that packets that
are matched by rules unaffected by exceptions pay mini-
mal performance penalties, with very few packets in this
category requiring more than 10% lookup time.

As expected from the pre-experiment analysis, many
packets that are affected by the exceptions attain worst case
performance. For example, in experiment Exc-A2.1, there
is a penalty of between 30% and 50% for almost all packets
and analysis of the raw data show that the lookup path for
many of the packets is the longest path in the BDD.

Direct comparison withe Cisco’s implementation is
difficult because of the different starting points, and the
difficulty in finding published studies of the Cisco dynamic
access list performance.

6.6 Other protocol costs

We also built a prototype systems for the protocol pre-
sented in Section 4. Tholo [19] built a Java prototype sys-
tem with a Postgres database with the users’ information.
The implementation allowed users to make requests of the
firewall and for the firewall to respond with information
given to it by a pluggable dynamic access list mechanism.

Divac [6] built a different prototype system to measure
the protocol costs. He designed it for an environment with
a few hundred machines and approximately 1000 users. He
showed that a simple server could handle up to 100 concur-
rent requests at less than 20ms per request (not including
the BDD costs reported in the previous section).

Tholo and Divac’s reports showed that the network
protocol costs are minimal, especially considering that ex-
ception requests will be relatively infrequent.

7 Conclusion

This paper has proposed the use of dynamic access lists
for IP filtering, arguing that the benefits of dynamic lists
are increased flexibility and security.

A semantics for dynamic access lists was proposed and
motivated, as well as a protocol for interaction between the
users and the firewall. A prototype system was built and
experimentation done using simulated data.

Memory costs of representing access and exceptions
lists was very modest and it was shown that the largest ex-
periment we did would require less than 500K of RAM.

The results show that the cost of making or undoing
an exception on the firewall is less than a millisecond on a
Pentium III running at 800MHz. The other protocol costs
required for making an update are between 1 and 2ms de-
pending on load, and so the latency experienced by the user
would not be noticeable.

With respect to the cost of filtering, the experiments
showed that while for many packets there would no signifi-
cant penalty and possibly even an improvement in cost, for
many real packets the lookup time would increase. Nev-
ertheless the extra costs are not large and we can give a
hard upper bound on these penalties. Here the benefits
of the BDD representation are significant since there is a
fixed upper limit for the cost of a lookup, no matter the
size of the access or exception lists and the representation
generally provides low variance for lookup. Thus we have
a guaranteed upper bound on the cost of lookup. On an
800MHz Pentium III, this cost is at most 2.1µs. Whether
this is acceptable would clearly depend on the circum-
stance; however, even on our very modest equipment, this
would support performing almost 500 000 lookups per sec-
ond. Faster equipment would support faster lookups.

Performance can also be improved by:

• the use of N-ary decision diagrams rather than bi-
nary decision diagrams. Attar [1] showed that this
could improve performance significantly at modest in-
creased memory use.

• the representation is ideal for shared memory multi-
processors and so one could expect almost linear
speedup.

• the use of field programmable gate arrays (FPGAs) is

12



Research Articles

also worth examining. Previous work [15] showed that
this technology is very effective for static lists. These
techniques would need to be extended to deal with dy-
namic lists.

The biggest open issue is how exceptions can be made,
and this needs future research. There are several possi-
bilities. They can be made: (1) completely manually; (2)
on-the-fly as they are needed using a simple IP address-
based scheme; or (3) by an intelligent application-aware
system. In particular, a policy-driven approach seems to
be the most desirable [12, 18]. The protocol proposed here
could provide an engine that would allow an efficient im-
plementation of a policy-driven dynamic access list.

The overall conclusion of the paper is that increased
security and flexibility can be provided through the use
of dynamic access lists with relatively little performance
penalty. The most important next step is to build a proto-
type for a working environment. We also wish to explore
the use of this technology for mobile computing.

Acknowledgements: Pekka Pihlajasaari made a number
of valuable comments on a draft of this material, includ-
ing the suggestion of generalising from a priority-based to
a group-based scheme. I also thank Brynn Andrew for his
useful comments. The anonymous referees from an earlier
conference version of this paper made useful comments
that improved it. Thanks also to Pang Li, John Deneys,
Sefako Tholo and Marko Divac, who were students we
worked on various aspects of this work. The work was
funded by NRF (GUN2050322) and Wits University Re-
search Committee grants.

References

[1] A Attar. Performance Characteristics of BDD-based
Packet Filters. MSc Research Report, University of
the Witwatersrand, Johannesburg, School of Com-
puter Science, 2002.

[2] S M Ballew. Managing IP Networks with Cisco
routers. O’Reilly, October 1997.

[3] R Bryant. ‘Symbolic Boolean Manipulation with Or-
dered Binary-Decision Diagrams’.ACM Computing
Surveys, 24(3):293–318, (September 1992).

[4] Cisco Systems Inc. Cisco IOS Lock and Key Secu-
rity. CISCO White Paper, 1996.

[5] Cisco Systems Inc. Configuring IP Sys-
tems. Published at the Cisco web site, 1997.
http://www.cisco.com/univercd/cc/
td/doc/product/software .

[6] M Divac. Efficient use of dynamic access lists in fire-
walls. Honours Research Report, School of Com-
puter Science, University of the Witwatersrand, Jo-
hannesburg, November 2003.

[7] P Gupta and M McKeown. ‘Packet classification on
multiple fields’. In Proceedings of the SIGCOMM
’99, pp. 147–160. ACM, (1999).

[8] S Hazelhurst, A Attar, and R Sinnappan. ‘Algorithms
for improving the dependability of firewall and fil-
ter rule lists’. InWorkshop on the Dependability of
IP Applications Platforms and Networks, pp. 576–
585, New York, (June 2000). IEEE Computer Soci-
ety Press. InProceedings of the International Con-
ference on Dependable Systems and Networks.

[9] S Hazelhurst, A Fatti, and A Henwood. ‘Binary Deci-
sion Diagram Representations of Firewall and Router
Access Lists’. Technical Report TR-Wits-CS-1998-
3, Department of Computer Science, University of
the Witwatersrand, (October 1998). Proceedings of
SAICSIT ’98.

[10] K Knorr. ‘Dynamic access control through Petri
net workflows’. InProceedings of the Sixteenth An-
nual Computer Security Applications Conference, pp.
159–167. IEEE, (2000).

[11] J McHenry, P Dowd, T Carrozzi, F Pellegrino, and
W Cocks. ‘An FPGA-based coprocessor for ATM
firewalls’. In Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 30–39,
(April 1997).

[12] P Naldurg and R Campbell. ‘Dynamic Access Con-
trol: Preserving Safety and Trust for Network De-
fense Operations’. InProceedings of the Eighth ACM
Symposium on Access Control Models and Technolo-
gies, pp. 231–237, (2003).

[13] P Naldurg, R Campbell, and M Mickunas. ‘Develop-
ing dynamic policies’. InProceedings of the DARPA
Active Networks Conference and Exposition (DANCE
’02), pp. 204–215, (2002).

[14] C Schuba and E Spafford. ‘A Reference Model for
Firewall Technology’. InProceedings of the Thir-
teenth Annual Computer Security Applications Con-
ference, (December 1997).

[15] R Sinnappan. A Reconfigurable Approach to TCP/IP
Packet Filtering. MSc Research Report, School of
Computer Science, University of the Witwatersrand,
June 2001.

[16] F Somenzi. CUDD: CU decision diagram pack-
age.http://vlsi.colorado.edu/˜fabio/
CUDD/cuddIntro.html , 2004.

[17] V Srinivasan. ‘Fast address lookups using controlled
prefix expansion’.ACM Transactions on Computer
Systems, 17(1):1–40, (February 1999).

[18] L Teo, G J Ahn, and Y Zheng. ‘Dynamic and risk-
aware network access management’. InProceedings
of the Eighth ACM Symposium on Access Control

13



Models and Technologies, pp. 217–230. ACM Press,
(2003).

[19] S Tholo. Dynamic access lists. Honours Research
Report, School of Computer Science, University of
the Witwatersrand, November 2001.

[20] K Washburn and J Evans.TCP/IP: running a suc-
cessful network. Addison-Wesley, Harlow, 1996.

A Representation of base list and ex-
ceptions: GBA

The previous section showed that any set of access list con-
ditions can be represented as a boolean expression. This
section describes how the base list and exceptions can be
represented under GBA.

The following notation is used:

• φB : The boolean expression representing the base ac-
cess list.

If we are not considering exceptions, then a packet is
accepted by the list if under the interpretation of vari-
ables given by the bits in the packetφB is true.

• φA: The boolean expression representing the access
list together with exceptions. Where there are no ex-
ceptions,φA = φB .

• E(B, i): This condition states what exceptions are per-
missible in exception listi. Formally, for each group
i, the condition is the disjunction of thedenyrules that
are labelled withi or a supergroup ofi all conjuncted
with the conjunction of the negation of the other rules.
So, if we instantiate the variables inE(B, i) with val-
ues from the bits in a packet header, we find out
whether an exception in listi can over-riderejectrules
in the base list in order to allow this packet.

• εj : the expression representing exception listj.

Note thatεj ∧ E(B, j) gives us theeffectiveexception
list for groupj – the requests asked for permitted by
the deny rules in the base list.

Under the GBA semantics given in Section 3.4 (on page 4)
the boolean expression that represents a base access list
andn exception lists is:

φA
def= φB ∨ (∨n−1

i=0 E(B, i) ∧ εi) (2)

The firewall keeps the following information:

• φB , the representation of the base list;

• For each update requestu, φu, the boolean expression
representing the exception, the ID of the request, ex-
piry time and the group of the originator of the request;

The update requests are stored in a manner so that they
can efficiently be accessed by ID number, by expiry
time, and by group number.

• For eachi, E(B, i), the exceptions not permitted by the
base list for groupi;

• For eachi, εi, the exceptions requested by groupi;

14


