Specifying and verifying fault-tolerant hardware

Scott Hazelhurst Jean Arlat

March 9, 2002

Abstract

Fault tolerant systems are an important class of systeem afted in safety critical or highly available
applications. For these systems, as well as verifying thetfanal and timing properties we must
verify that the fault-tolerant mechanisms do protect theteay in the ways expected.

This report proposes an integrated framework for spedafgind verifying fault-tolerant systems:
functional, timing and fault tolerance properties. Thecéfieation is given using a temporal logic,
TL, as a set of assertions of which describe the behaviouredisas the faults which should be
tolerated. The faults themselves are represented ast@ggien pairs: the trigger says when a fault
manifests itself, and the action says how the fault marsfieself.

The system being verified is represented as a finite stateineaffiSM). The fault descriptions
are used to construct observer and saboteur FSMs, which edraposed with the original FSM
allow a wide range of faults be modelled and fault toleranoperties verified. The verification is
done using a model checking algorithm called symbolic ttajey evaluation. This framework has
been implemented in the VossProver verification systemgazabe study has been carried out, with
promising experimental results.

1 Introduction

The importance of building fault-tolerant systems for gafgitical applications has been recognised
for well over 30 years. Given their purpose, it is especiaiportant to validate that they do have
their desired or claimed fault tolerance properties. Soarg successful evaluation schemes have been
proposed, typically using schemes of fault-injection dedpwith testing (see [11] for a discussion).
Although testing-based techniques are successful, tliersoae limitations to these approaches: fault
tolerance properties are often expressed informally; asiths exhaustively testing functional properties
of a system is an intractable problem, so is testing fautiréwice properties. Though a high degree
of confidence can be obtained using the appropriate testethads, this is highly computationally
intensive, and there must still be uncertainty about theltes

In other domains, formal methods have been proposed astisdinithese problems, and especially
with hardware verification a large degree of success has tigaimed [13]. Although formal methods
have also been used in verifying fault-tolerant designspeci§ications (e.g. [3, 14, 15, 18]) formal
methods have not had wide-spread use in verifying faultrémit systems, especially verifying designs at
a relatively low-level of abstraction.

This report explores the use of formal methods in specifng verifying fault-tolerant hardware
systems. The key questions explored are:

e What is a suitable language for specifying the desired faldrance properties?
e How can formal verification techniques be used for verifyihgse properties?

*School of Computer Science, University of the Witwaterdralohannesburg, South Africa, scott@cs.wits.ac.za
t1Laboratoire d'Analyse et d'Architecture des Systememté National de la Recherche Scientifique, Toulouse,déran
arlat@laas.fr

This report proposes a method of expressing fault toler@fteproperties of interest, and a comple-
mentary method of verifying these properties. Using thesthods, the following design methodology
is proposed. (1) The system is formally specified — both nafrdmd FT behaviour. (2) The basic non-
fault-tolerant design is verified (where this design can learty distinguished from the fault-tolerant
one). (3) The third phase is the verification of the fauletaht design without the presence of faults
(to show that the introduction of fault tolerance has notodticed errors). (4) The final phase is the
verification of the circuit in presence of faults to show ttia fault tolerance mechanisms work. The
main focus of this paper is the specification and verificaibRT properties.

Outline: Section 2 presents the basic framework for specificationvanfication (based on tempo-
ral logic and model-checking). Section 3 presents a metlfiepeaxcifying and verifying fault tolerance
properties. Section 4 presents a case study to evaluatppheagh and identify its strengths and weak-
nesses. Section 5 concludes and suggests appropriate fesaarch.

2 Framework for specification and verification

The choice of a specification language is difficult becauseetlare many competing requirements of
both a technical and human origin. Natural language anddidgr logic are both expressive, but neither
are ideal. Natural language specifications are imprecigkfiest-order logic specifications may quickly
become too detailed to be understandable.

This paper explores the use of a temporal logic for exprgdsihproperties. The major motivation
for this is that temporal logics have proved very useful fegafying functional and timing properties of
systems, so if a temporal logic can be used for expressingréfepies as well, a uniform framework
can be provided for specification. So it is useful to know ttrerggths and weaknesses of a temporal
logic based approach to specifying fault-tolerant systems

2.1 The logicTL

Only a brief introduction to the logic is given here — for distsee [9]. Systems are modelled as finite
state machines, i.e., by a set of stafesnd by a deterministic next state functi¥h: S — S. (Note that
the state space is modelled as a lattice which allows a nextaount of non-determinism to be expressed
implicitly [6, 17].)

The specification is done using the temporal logic TL [10].eTore of TL is a set of predicates
which allows the description of the instantaneous statdefslystem, e.g. whether a node in a circuit
has a certain value or whether two nodes are related in drceréy. We denote the set of cosénple
predicatesi. Typical predicates might beglClk] = H (is the clock high?);]Reset = L (is the reset
line low?); and[Scoré < 16 (is the value of group of lines identified t§core when considered as a
bit-vector, less than 167?).

Predicates are combined using logical operators such genmion and negation, and temporal
operators which allow us to refer to time-dependent behmvibL has two temporal operatomsext-time
anduntil. In practice, only the next-time operator is used. Althoddhis comparatively inexpressive,
it has been used successfully in a range of examples [9], tarslmplicity supports a very efficient
model-checking algorithm. The syntax of the logic is giverthe following BNF —

TLu= G | TLATL | =TL | Next TL | TLUntilTL.

While the truth of a predicate is evaluated with respect ttagesthe truth of a TL formula is given
with respect to a sequence of states, since it can refer tsmaerof time instants. The informal seman-
tics is that the first state in the sequence refers to time Osandessive states in the sequence refer to
successive instants in time. The formal semantics of a flarnisugiven by the satisfaction relatic®at
(Sat: S¥ x TL — Q). Given a sequence and a TL formulag, Satreturns the truth of with respect to
the sequence. Notation Leto = sgsis2... be a sequence ifi: theno; = s;, ando>; = s;si41

Definition 2.1. Semantics of L
1. Ifg € GthenSalo,g) = g(so). 2.Salo,gAh) = Salo,g) A Salo,h)
3.Sa{o,~g) = —Safo,9g) 4.Safo,Next g) = Salo>1,9)
5.Sa{o,gUntilh) = \/?io(sa(ozo, gy A ... A Sa(ozi_l,g) A Sa(ozl‘h,)

Examples and Derived Operators: Disjunction and implication are examples of derived opmat

Other derived operators are possible. The most importaimtedeoperator is th®uring|] operator

defined asDuring|(fo,t0),.-- , (fn.tn)] 9 o A;?ZU(AZj:f, Next¥g), which asks whethey is true

from time f, throughty, fi throughty, ... , and fromf, throujghtn. Here are some examples.

o diff ([Output], z1 + z2) < 2 * delta. Is the absolute difference between the value on the set of
lines denoted bPutputand the sum of:; andzs less thar® x delta? (Names of state components
are in square brackets, so h@atputis the name of a state component, while 25 anddelta are
variables andliff is a function.)

e [CIK| = H]ANext!?([CIK] = LA[Reset= L): at time 0, is the clock high, and at time 10 are the
clock and reset lines low?

e During]|(0,9), (20,29)] ([Clk = L]) ADuring][(10,19), (30,39)] ([Clk = H]) A
During|(0,2)] ([Reset= H) ADuring|(3,39)] ([Reset=L)
The formula asks if the clock is low for 10ns, then high for 40then low for 10ns, and then high

for 10ns; and whether the reset line is high for 3 ns (time 6ugh 2 inclusive), and then low from
time 3 to time 39.

2.2 Specification of systems

The specification of a system’s nominal behaviour is givea bgt of assertions. Each assertion consists
of a pair of TL formulas, and is written like thisg=>-h). If a model M satisfies this assertion, in
every run of the system in whighis true, 4 is true too.g, theantecedentcan be thought of as supplying
the ‘input’ or ‘stimulus’ to the circuit, whileh, the consequenis the expected reaction to the stimulus.
Where necessary we write! |= (g=>h) to emphasise that the assertion is about mgdel

Both functional and timing properties can be specified thdg.\iFor example, the following specifica-
tion could describe the behaviour of a multiplication citcdescribing the result (including bit-widths),
when the inputs must be stable and when the output will bdestab

During[(0,9), (20,29)] ([Clk = L]) ADuring[(10,19), (30,39)] ([Clk = H]) A
During(0,39)] [A] = z[7 — O] A[B] = y[7 — 0] A
= During|(35,39)] [C] = (z x y)[15 — 0]

Significant technical detail has been omitted here. For gkanthe state space is a lattice — which
is used for abstraction — and the truth domain is a four-whlogic rather than a boolean one. Partly
the omission is for space reasons, but also because thedokibp of verifying fault tolerance systems
proposed here does not rely on the particular temporal laggdl, or the model-checking algorithm used.
Interested readers should consult [9, 10].

2.3 Symbolic Trajectory Evaluation and the VossProver Veriication system

Symbolic trajectory evaluation (STE) is a model-checkifgpegthm due Bryant and Seger [17], and
extended by Hazelhurst and Seger [9]. It is particularlytesuifor hardware verification, especially
where accurate models of system behaviour, including tinaie important. STE has a complementary
compositional theory, and has been applied to a range @frdiit circuits [9].

The VossProver verification system is built on top of Seg€dss system [16]. The Voss system
consists of three major components: an efficient implentiemtabf binary decision diagrams [5]; an

3

event driven symbolic simulator with comprehensive delag ace analysis capabilities; and a general
purpose, functional language called FL. STE's composifidheory has been implemented as a simple
proof system in the VossProver [8]. Using FL as a script laggy a verifier can interact with the proof
system to either perform STE on a circuit or to use the contiposil theory.

Circuits to be verified are represented internally as firidéesmachines. These FSMs are constructed
automatically from gate-level or switch-level circuit daptions and a number of standard input formats
are supported. Voss also has its own format, called EXE. B models that Voss builds are accurate
models of the circuits, including timing.

3 Specification and verification of fault tolerance

3.1 Specifying fault tolerance properties

A fault is modelled with two components: a trigger and a cgponding action. The idea is that the
circuit behaves normally, but that whenever the triggeris,tthe behaviour of the circuit is modified (as
little as possible) so as to make the action true as well. ®aifpfault tolerance properties, assertions
are generalised to contain four pieces of information (tme@edent and consequent as before; a fault
trigger; and a fault action) and is denoted tlgus=> h where 6 triggers ¢ (called f-assertions).

Informally, the intended meaning gf=> h where 0 triggers ¢ is that in every run of the machine
M, wheneverg is true, so ish whether or not the fault described B\triggers ¢ occurs Since the
antecedent, consequent, trigger and action may refer teaime circuit components and variables (or
different ones), an f-assertion can express a variety afietrrs in the face of faulty and non-faulty-
behaviour.

In this framework, the trigger and the action carelpg TL formulas. However, the exploratory study
of Section 4 makes the following restrictions: only the nemporal fragment of the logic can be used;
and the action must non-ambiguously describe the faultrigradfected nodes in the circuit.

The primary motivation of this restriction is not so muchea$ implementation and efficiency of
verification but simplicity of specification. The semantafswhat is meant when temporal operators
are used in both the trigger and action are tricky and reg@oene study. Examining the strengths and
weaknesses of just using the non-temporal fragment of thie e a meaningful and useful start, and
indicates where extensions are necessary.

3.2 Modelling faults

So far we have modelled the finite state machine as if it wernafitbic. In fact, for circuit models a
convenient and efficient way to model the circuit is to repreeghe state of the system as a tuple, with
each node (state-holding component) in the circuit makimgne component of the tuple. Thus, if a
circuit hasn components, the = C™ whereC is the set of values that an individual component can take.
Similarly, the next-state function is decomposed imtoext-state functions, one for each component. So,
if s = (s1,...,8n), Y(s) = (Yi(s),...,Y,(s)), with eachY; being of typeS — C. For convenience
we name each node by its index in the tuple description ofttite space.

Let 0 triggers ¢ be a fault. LetFA be the set of nodes that are describediand for each node
j € FA, letv; be the value required faf to be true. We modify eacl’; so that it reflects the faulty
behaviour if it happens.

Formally, define?; (s) & Yi(s) , ! ¢ FA

combine(Yj(s),v;) i€ FA,

wherecombine combines the correct value and the faulty value in the apigpway. Ifo(s) is false,
combine produces the correct result; fs) is true, combine produces the faulty value. (The actual
implementation okcombine is more complex than described here to take into accountttied state-
space: readers familiar with STE should note thatbine is monotonic.

The global next state function that takes into account tlét fa f(E) o (Yi(s),... ,Yn(s))).

Finally, we can define our ‘faulty’ FSM to b % (S, Y).

Note that if all temporal logic formulas were allowed in fadéscriptions, then the definitions pre-
sented here would need to be generalised. This is a topigtbefuresearch.

Semantics of an f-assertion: Given a modelM, the formal semantics of an f-assertion
g => h where ¢ triggers 0 is given by

M = g=>h where ¢ triggers 6 e M = (g=>h).

3.3 \Verifying f-assertions

The verification of f-assertions is accomplished by comigr$TE and the idea of saboteurs presented
in [1]. The basic idea is as follows:

e Suppose we wish to show! |= g => h where ¢ triggers 0;

e Construct an observer machiné o able to observe the state 8fl. When M detects thap is
true of the current state o¥1, it sets an internal flag to trigger the fault (see also [2,08]dther
work which has used the idea of observers);

¢ Construct a saboteur machind g that can inject the fault intavf. When M triggers the fault,
the saboteur ‘hijacks’ the machintef and injects the fault described By

e Anew machineK/l\, which is the composition oM, M and Mg is constructed.
e We verify M |= (g=>h).

All the constructions described above are done autombtiaatl the only human intervention required
is the provision of the circuit description and the f-adsert The algorithms that perform these construc-
tions and compositions have been implemented in the VogsPsgstem.

4 A case study

This section explores the methodology presented in theiqus\sections through a case study. The
system chosen as a case study is presented in [12] and @ebiribletail in [4]. The overall architecture
of the system is presented in Figure 1.

actuator sensor actuator sensor actuator sensor

S1 S2 S3

| | | network

Figure 1: Overall architecture of system

The system hag channels(here, 3 channels, labellesll, S2and S3. Each channel communicates
with its environment, taking in data from sensors and theuifigy commands to actuators. The channels

communicate with each other on a network. The basic prenfif@ssystem is that by implementing
the system withn channels, the system is able to tolerate faults, either méams or of the channels
themselves.

The channels operate the same protocol (described in def{di). In each round of operation the
channels all go through 11 phases, and one of the channelasntaster. The protocol works by each
channel reading its own sensor data, broadcasting its iselasa to the other channels, followed by
a process of agreeing on the data to be used and the resultcpobd There is also a mechanism for
electing a new master.

Fault tolerance is also provided internally. Each chanpabists of twonodesand an internal con-
nection. One node is tr@ntrol nodethat actually performs the above steps. Tanitor nodeperforms
exactly the same steps, except that it does not communisatesults outside the channel. However, if
the monitor and control produce different results, thersingple circuitry that disconnects the channel
from the external network, ensuring fail-safe behaviousoAif either the control or monitor do not read
inputs quickly enough, the channel will be extracted from ¢ircuit. There is an error state into which
a channel goes if such problems are detected; a channel avigsout of the error state if reinitialised.

The implementation examined here was based on the desigritgesand used in [4]. That imple-
mentation was given in behavioural VHDL. The design wasdliatad into Voss EXE format (essentially
a gate-level description). Though the translation was dgnkand, in principle this step could be au-
tomated. The major difference between the behavioural VDU EXE implementations is the way
in which time is dealt with. In behavioural VHDL, it is posk#ito describe behaviour like ‘waltdj.s’
directly, which is not possible at the gate-level. At theeglavel a clock has to be introduced to deal
with time. For convenience of specification, only one claekised in this implementation, but it would
be straightforward (though the specification would be mduttared) for each channel to have its own
clock. For the version of the system where data and addressed2-bit numbers, the circuit had over
100 000 gates and 10 000 state-holding components (thermepkation is rather crude!).

4.1 \Verification of nominal behaviour

The specification and verification of the nominal behaviouths system (i.e. the behaviour without
faults) is an interesting exercise in its own right. Howewasrthe main point of this paper is the specifi-
cation and verification of fault-tolerant behaviour onlyesvfpoints are sketched here. More detail can
be found in [7].

A complete specification requires many assertions to bengivethe case study, six sample assertions
were verified. The two basic goals were to show that:

e When the system is initialised, the first channel initiadise declared master, and the first round
of operation is correct.

e If at the beginning of a round the system is in a consisterte,stnd one of the channels is the
master, then the circuit works correctly and ends the rooraddonsistent state.

Description of clock: As this circuit is clocked, we need to refer to the clock. THe férmula,
ClockAntis defined to do this. The clock goes up and down for 30 clockesyeach of 100ns; for the
first half of the cycle the clock is low and the second half high. Formally the definition is:

F and
T

During [(0, 49), (100, 149), ..., (2900, 2949), (3000, 3049)] d ock
During [(50, 99), (150, 199), ..., (2950, 2999), (3050, 3099)] O ock

Specifying the new master: The informal specification of the circuit is that at the endeath round,

that channel which had the sensor that produced the mediag ofall sensor values should be elected
master, i.e., if the channel picked the right value, it stida# the master next round. This turned out
to be an interesting property to specify. A direct transkatf the informal specification turns out to be
wrong since more than one channel can pick the same senser Wastead this property is specified as:

For each channel, if it is the master then it picked the medédme; and exactly one of the
channels is the master.

The formal definition is given by

During (2700, 2749)
(if_c Slcont:Pstatus then_c sl got_ned) & (if_c S2cont:Pstatus then_c s2_got_ned) &
(if_c S3cont:Pstatus then_c s3_got_ned) & exactly_one_master_active

whereSx cont : Pst at us is a flag that indicates whether chanré the master. The auxiliary formula
sl got nedisdefinedto besl][3- 0] = nmedi an [s1] 3-0], s2[3-0], s3[3-0]] (and simi-
larly for channels 2 and 3exact|y_one_mnmst er is just the exclusive or of the status components
of each channel (the component has a high voltage if it is thsten, a low voltage otherwise).

4.2 \erifying fault tolerance behaviour

As with the nominal behaviour, many aspects of the faultréwiee behaviour can be checked. A primary
criterion for a specification language is that it shouldwltbe properties to be expressed in meaningful
and concise way. We need experience in specifying fawdtanlt behaviour and this is one of the goals of
the paper. The examples given below illustrate the typeudf falerance properties that can be checked.

Stuck at faults: This is a fault which always occurs, or at some time becomes dfways. Here is
an example of how such a fault can be modellédriggers ([S1contnwvdl = f). This says that the
network validation signal of channel S1 is always false. Vemtto show that in this case, the other two
channels still work, and agree on the right value (in thislangentation, the median of two numbers is
the minimum of two).

We define the antecedeAnt as

Cl ockAnt & network_signal=F & (During (0,10) S2init=T)& During (11, 3099) S2init=F) &
(During (0,200)(Slinit=T & S3init=T)) & (During (201,3099) Slinit=F & S3init=F) &
(During (1500, 1599) Slinput=sl1[2-0] & S2i nput=s2[2-0] & S3input=s3[2-0])

This is the first result proved (here we assume that the oigputice the sensor value agreed on by the
channels).

Ant ==>>
During (2600, 2649)
S2out put =2*mi n[s2[2-0],s3[2-0]][3-0] and S3out put =2*nmi n[s2[2-0],s3[2-0]][3-0]
Fault assunption: stuck at fault : Slcontnwal = F

Expressing relationships In the above example, the consequent is too strong in one wayether
implementation might choose the maximum of two values astbdian. In another sense it is too weak,
since it does not really make explicit the notion of faulet@ince that we want. Here is an alternative
result — logically weaker than the previous one, but it gigesore meaningful result. The essence of
this result is: provided the sensor values are within a terenge of each other, then the output of the
two working channels will be within some acceptable rangenfthe median of all three sensor values.

Ant ==>>
During [(2600, 2649)] if_c well_behaved_sensors then_c wel | _behaved_out put
Fault assunption: stuck at fault : Slcontnwal = F

wherewel | _behaved_sensor s is defined to be:
diff [max [s1[2-0],s2[2-0],s3[2-0]],mn [s1][2-0],s2[2-0],s3[2-0]]] < delta[2-0]

andwel | _behaved_out put is defined as

di ff [S2output, (2*medi an [s1[2-0],s2[2-0],s3[2-0]])[3-0]] < 2*delta[2-0]

Provided the difference between the maximum and the miniroiiine sensor values is(for any 3-bit
numbers), then the output value of S2 (and analogously S3) will béniwi2é of the median of the right
result if S1 fails (i.e., if S1 fails, S2 and S3 will be almogght). ¢ is symbolic — i.e., we verify the
result for all values o within a certain range. Also note the care that has to be takapecifying
the bit-widths of the numbers concerned. Again there is smuiem here and it certainly clutters the
specification, but it is a detail that needs to be taken ca(eilnfe the desired fault-tolerant result is not
true if § is too large, because the system does finite arithmetic)refdre, the specification precisely
describes the fault tolerance limitations.

Triggering faults on input values: The antecedent here is the same as for the stuck at fault.eBeit h
we assert that the fault is only triggered for some valueti®@ifput. The consequent then shows that if
the fault is triggered we get one result, while if it is noggered we see the nominal behaviour (‘7' is
used as the synchronisation signal on the network.)

Ant ==>>
During [(2600, 2649)]
S2output = if (s1[2-0] = 7) then (2*min [s2[2-0],s3[2-0]])[3-0]
el se (2*medi an [s1[2-0],s2[2-0],s3[2-0]])[3-0]
Fault assunption --- Trigger : s1[2-0] = 7; Fault . Slcontnwal = F.

Triggering faults on state information: Faults can also be triggered on state information. This is
useful when it is difficult to know when (or even if) a fault shd be triggered using only input values or
time. In this example, we insert an error into S1 when it getis & state in which it is about to broadcast
on the network (it broadcasts 0, rather the right sensoreyaltlote we force the same error into the
control and the monitor node (otherwise it would automéliicget extracted from the circuit).

Ant ==>> During [(2600, 2649)] S2output = (2*nmedian [0,s2[2-0],s3[2-0]])[3-0]
Faul t assunpti on:
Trigger: Slcont: Pstinterchange and Slcont: Pryid; Fault: Slcontdata=0 and Slnont dat a=0

Verifying fault-checking components: At alower level of abstraction some of the circuitry that ieyp
ments the fault tolerance can, of course, be checked famitgibnal behaviour directly. For example, in
this circuit the monitor and control nodes check each othercan show that the circuitry that performs
this checking will detect errors. This is straight-forward

4.3 Computational cost

To assess the practical worth of using formal verificatior, need to consider the computational cost,
since the computational costs are non-trivial. Of courae,must assess these costs in terms of the costs
of not finding errors. And it is often possible to verify snealiversions of design at early stages so that
even if the final verification takes many hours to run, duriegigh and implementation the verification
algorithm can be used effectively. Nevertheless, comjmurial costs are critical.

Table 1 shows the cost of verifying the nominal and FT behavidhe largest circuit verified had
approximately 10000 state holding components and 150 O@&.gdhe verification was run on a 500
MHz Pentium Il. Six nominal properties and six FT propertieere verified, for four different versions
of the circuit (varying the datapath bit-width from 4 to 3Bor each run, the size of the circuit and the
cost of the verifications is shown in the table.

The results show that the cost of verifying the circuit ardl wéhin the capacity of the VossProver
tool (especially if one considers the fact the figures arateél by the overheads of loading the system,
building the circuit etc, which usually only has to be done@m session). The cost of verification
appears to grow more quickly than the number of gates (bliicgiarithmic in the size of the state
space, though a more through analysis is needed here).

8

Bit-width 4 8 16 32
Number of gates 26000 | 50000| 85000| 150000
Cost for nominal properties (§) 63 85 128 308
Cost for FT properties (s) 19 31 69 275

Table 1: Cost of verification of nominal and FT propertieséoands

Human cost: Specification requires significant human insight. The \eatfon of all results shown
here is completely automatic (though this is not somethirag We can expect at this stage in general).

5 Conclusion

This paper has examined the use of formal methods in vegffanlt-tolerant systems’ designs, present-
ing an approach to specifying and verifying fault-tolerapstems. The logic used also allows a range
of fault conditions to be expressed. These fault conditiargs given as trigger-action pairs: the trig-
ger indicates when a fault will occur and the action says vy of fault occurs. Using the ideas of
saboteurs [1], the method of symbolic trajectory evalumtian be generalised to be able to verify FT
properties.

A case study was performed to evaluate the proposed appréaarall, the case study shows that
the approach is successful. The nominal behaviour of thiitiwas verified, and then a range of FT
properties were examined including: stuck at faults; fatrlggered by input values; and faults triggered
by state conditions.

In addition, the expected behaviour could be modelled &xée., the output ig) or approximately
(e.g., the output is within a certain range). Itis also dalssio verify directly that certain fault-monitoring
circuitry performs its task. The experimental results alkowed that the computational costs of STE
were quite reasonable.

Future research: There are a number of issues for future research:

Language for specifying fault tolerance: The case study explored the use of the non-temporal
fragment of TL for specifying the trigger-action pairs. $hiroved capable of expressing a range of
different behaviour. We need to do more case studies to gefriexice in what type of FT properties
need to be proved, in order to find where the limits are. It appéhat allowing temporal operators in
both triggers and actions would be useful, and the framewbusing observers and saboteurs should be
able to cope with the extension. One particular anticipdiffitulty is the specification of both absolute
and relative times in the fault specification.

Use for determining fault tolerance coverag@®ne interesting possibility is to generalise the spec-
ification of the fault and/or antecedent, expecting thefioation to fail. The point of this is that the
information given by the VossProver explaining why the fieation failed could be used to determine
fault tolerance coverage.

Compoasitional theory: A very important technique to overcome the state explosiablpm that
bedevils symbolic model checking is the use of compositignaSTE has a simple but successful
compositional theory that has been implemented in the \fossP [8]. If we wish to use STE to deal
with fault tolerance we need to extend the theory for conmigirassertions to a theory that deals with
combining f-assertions.

Improving the performance of algorithmsAnd, of course, all algorithms can benefit from improve-
ment. Even though in the case study chosen the STE algorithiid easily prove the required assertions
and f-assertions, the insatiable demands for memory anddgElels needs to be met. .

Acknowledgements:

This work was funded in part by the South African National @&esh Foundation and the Centre National
de la Recherche Scientifique.

References

[1] J. Arlat, J. Boug, and Y. Crouzet. Validation-based &lepment of Dependable SystemdEEE Micro, 19(4):66—79,
Jul-Aug 1999.

[2] 1. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Noklethodology and system for practical formal verificatio
of reactive hardware. In D.I. Dill, edito€AV '94: Proceedings of the Sixth International ConfereaneComputer Aided
Verification Lecture Notes in Computer Science 818, pages 182-193nBéuhe 1994. Springer-Verlag.

[3] C. Bernadeschi, A. Fantechi, S. Gnesi, and A. Santonem&bovalidation of fault tolerance mechanisms. Digest of
FastAbstracts of the 28th International Symposium on Faolérant Computingpages 66—67. IEEE Computer Society
Press, 1998. http://www.chillarege.com/ftcs/fastatut/389.html.

[4] J.Boué.Test de la Tolérance aux fautes par injection de fautes dassnodeles du simuation VHDRhD thesis, Institut
National Polytechnique de Toulouse, November 1997. LAABdRES7503.

[5] R.E. Bryant. Symbolic Boolean Manipulation with Orddr8inary-Decision Diagrams.ACM Computing Surveys
24(3):293-318, September 1992.

[6] S. Hazelhurst. Compositional Model Checking of Partially-Ordered Stafga&s PhD thesis, University of British
Columbia, Department of Computer Science, 1996.

[7] S.Hazelhurst and J. Arlat. Specifying and verifyinglfaolerant hardware. LAAS Report 99514, Laboratoire ddyse
et d’Architecture des Systémes, Centre National de la &eble Scientifique, December 1999.

[8] S.Hazelhurst and C.-J.H. Seger. A Simple Theorem PrBased on Symbolic Trajectory Evaluation and BDDEEE
Transactions on Computer-Aided Design of Integrated Qliscand Systemd.4(4):413-422, April 1995.

[9] S.Hazelhurst and C.-J.H. Seger. Symbolic Trajectorgli&ation. In Kropf [13], pages 3-79.

[10] S. Hazelhurst and C.-J.H. Seger. Model checking kedtit)Jsing and reasoning about information orders for attstra
Logic Journal of the IGPL7(3):375-411, May 1999.

[11] M.-C. Hsueh, T. K. Tsai, and R. K. lyer. Fault injecti@chniques and tool€Computey 30(4):75-82, April 1997.

[12] H. Kopetz. The time-triggered approach in real-timsteyn design. In B. Randell, J.-C. Laprie, H. Kopetz, and Bléd-i
wood, editorsPredictably Dependable Computing SysteBesic Research, pages 53-66. Springer, 1995.

[13] T. Kropf, editor. Formal Hardware Verification: Methods and Systems in Corigosr State of the Art Survey Lecture
Notes in Computer Science 1287. Springer-Verlag, Ber®9,71

[14] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formafivation for Fault-Tolerant Architectures: Prolegoraga
the Design of PVSIEEE Transactions on Software Engineeri2d (2):107-125, February 1995.

[15] J. Rushby. Systematic Formal Verification for Faultefant Time-Triggered AlgorithmdEEE Transactions on Software
Engineering 25(5):651-660, 1999.

[16] C.-J.H. Seger. VMoss — A Formal Hardware Verification t8ys User's Guide. Technical Report 93-45, De-
partment of Computer Science, University of British ColumbNovember 1993. Available by anonymous ftp as
ftp://ftp.cs.ubc.ca/publ/local/techreports/1993/TR4%.ps.gz.

[17] C.-J.H. Seger and R.E. Bryant. Formal Verification byrtBplic Evaluation of Partially-Ordered TrajectorieBormal
Methods in Systems Desjg1147-189, March 1995.

[18] M. Sheeran and G. Stalmarck. A tutorial on Stalmasgkocedure for propositional logiccormal Methods in System
Design 16(1):23-58, January 2000.

10

