
Specifying and verifying fault-tolerant hardware

Scott Hazelhurst� Jean Arlaty
March 9, 2002

Abstract

Fault tolerant systems are an important class of system, often used in safety critical or highly available
applications. For these systems, as well as verifying the functional and timing properties we must
verify that the fault-tolerant mechanisms do protect the system in the ways expected.

This report proposes an integrated framework for specifying and verifying fault-tolerant systems:
functional, timing and fault tolerance properties. The specification is given using a temporal logic,
TL, as a set of assertions of which describe the behaviour as well as the faults which should be
tolerated. The faults themselves are represented as trigger-action pairs: the trigger says when a fault
manifests itself, and the action says how the fault manifests itself.

The system being verified is represented as a finite state machine (FSM). The fault descriptions
are used to construct observer and saboteur FSMs, which whencomposed with the original FSM
allow a wide range of faults be modelled and fault tolerance properties verified. The verification is
done using a model checking algorithm called symbolic trajectory evaluation. This framework has
been implemented in the VossProver verification system, anda case study has been carried out, with
promising experimental results.

1 Introduction

The importance of building fault-tolerant systems for safety-critical applications has been recognised
for well over 30 years. Given their purpose, it is especiallyimportant to validate that they do have
their desired or claimed fault tolerance properties. Some very successful evaluation schemes have been
proposed, typically using schemes of fault-injection coupled with testing (see [11] for a discussion).
Although testing-based techniques are successful, there are some limitations to these approaches: fault
tolerance properties are often expressed informally; and just as exhaustively testing functional properties
of a system is an intractable problem, so is testing fault tolerance properties. Though a high degree
of confidence can be obtained using the appropriate testing methods, this is highly computationally
intensive, and there must still be uncertainty about the result.

In other domains, formal methods have been proposed as a solution to these problems, and especially
with hardware verification a large degree of success has beenobtained [13]. Although formal methods
have also been used in verifying fault-tolerant designs or specifications (e.g. [3, 14, 15, 18]) formal
methods have not had wide-spread use in verifying fault-tolerant systems, especially verifying designs at
a relatively low-level of abstraction.

This report explores the use of formal methods in specifyingand verifying fault-tolerant hardware
systems. The key questions explored are:� What is a suitable language for specifying the desired faulttolerance properties?� How can formal verification techniques be used for verifyingthese properties?�School of Computer Science, University of the Witwatersrand, Johannesburg, South Africa, scott@cs.wits.ac.zay1Laboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique, Toulouse, France,
arlat@laas.fr

1



This report proposes a method of expressing fault tolerance(FT) properties of interest, and a comple-
mentary method of verifying these properties. Using these methods, the following design methodology
is proposed. (1) The system is formally specified — both nominal and FT behaviour. (2) The basic non-
fault-tolerant design is verified (where this design can be clearly distinguished from the fault-tolerant
one). (3) The third phase is the verification of the fault-tolerant design without the presence of faults
(to show that the introduction of fault tolerance has not introduced errors). (4) The final phase is the
verification of the circuit in presence of faults to show thatthe fault tolerance mechanisms work. The
main focus of this paper is the specification and verificationof FT properties.

Outline: Section 2 presents the basic framework for specification andverification (based on tempo-
ral logic and model-checking). Section 3 presents a method of specifying and verifying fault tolerance
properties. Section 4 presents a case study to evaluate the approach and identify its strengths and weak-
nesses. Section 5 concludes and suggests appropriate future research.

2 Framework for specification and verification

The choice of a specification language is difficult because there are many competing requirements of
both a technical and human origin. Natural language and first-order logic are both expressive, but neither
are ideal. Natural language specifications are imprecise, and first-order logic specifications may quickly
become too detailed to be understandable.

This paper explores the use of a temporal logic for expressing FT properties. The major motivation
for this is that temporal logics have proved very useful for specifying functional and timing properties of
systems, so if a temporal logic can be used for expressing FT properties as well, a uniform framework
can be provided for specification. So it is useful to know the strengths and weaknesses of a temporal
logic based approach to specifying fault-tolerant systems.

2.1 The logicTL

Only a brief introduction to the logic is given here – for details see [9]. Systems are modelled as finite
state machines, i.e., by a set of statesS and by a deterministic next state functionY : S ! S. (Note that
the state space is modelled as a lattice which allows a certain amount of non-determinism to be expressed
implicitly [6, 17].)

The specification is done using the temporal logic TL [10]. The core of TL is a set of predicates
which allows the description of the instantaneous state of the system, e.g. whether a node in a circuit
has a certain value or whether two nodes are related in a certain way. We denote the set of coresimple
predicatesG. Typical predicates might be:[Clk℄ = H (is the clock high?);[Reset℄ = L (is the reset
line low?); and[Score℄ < 16 (is the value of group of lines identified byScore, when considered as a
bit-vector, less than 16?).

Predicates are combined using logical operators such as conjunction and negation, and temporal
operators which allow us to refer to time-dependent behaviour. TL has two temporal operators:next-time
anduntil. In practice, only the next-time operator is used. AlthoughTL is comparatively inexpressive,
it has been used successfully in a range of examples [9], and its simplicity supports a very efficient
model-checking algorithm. The syntax of the logic is given by the following BNF —

TL ::= G j TL ^̂̂ TL j :::TL j NextTL j TL UntilTL:
While the truth of a predicate is evaluated with respect to a state, the truth of a TL formula is given

with respect to a sequence of states, since it can refer to a number of time instants. The informal seman-
tics is that the first state in the sequence refers to time 0 andsuccessive states in the sequence refer to
successive instants in time. The formal semantics of a formula is given by the satisfaction relationSat
(Sat: S! � TL ! Q). Given a sequence� and a TL formulag, Satreturns the truth ofg with respect to
the sequence�. Notation: Let � = s0s1s2 : : : be a sequence inS: then�i = si, and��i = sisi+1 : : : .

2



Definition 2.1. Semantics ofTL
1. If g 2 G thenSat(�; g) = g(s0). 2. Sat(�; g ^̂̂ h) = Sat(�; g) ^ Sat(�; h)
3. Sat(�;:::g) = :Sat(�; g) 4. Sat(�; Next g) = Sat(��1; g)
5. Sat(�; g Untilh) = _1i=0(Sat(��0; g) ^ : : : ^ Sat(��i�1; g) ^ Sat(��ih; ))

Examples and Derived Operators: Disjunction and implication are examples of derived operators.
Other derived operators are possible. The most important derived operator is theDuring [℄ operator

defined as:During [(f0; t0); : : : ; (fn; tn)℄ g def= ^̂̂nj=0(^̂̂tjk=fj Nextkg), which asks whetherg is true
from timef0 throught0, f1 throught1, : : : , and fromfn throughtn. Here are some examples.� di� ([Output℄; x1 + x2) < 2 � delta . Is the absolute difference between the value on the set of

lines denoted byOutputand the sum ofx1 andx2 less than2�delta? (Names of state components
are in square brackets, so hereOutputis the name of a state component, whilex1; x2 anddelta are
variables anddiff is a function.)� [Clk℄ = H℄ ^̂̂ Next10([Clk℄ = L ^̂̂[Reset℄ = L): at time 0, is the clock high, and at time 10 are the
clock and reset lines low?� During [(0; 9); (20; 29)℄ ([Clk = L℄) ^̂̂ During [(10; 19); (30; 39)℄ ([Clk = H℄) ^̂̂During [(0; 2)℄ ([Reset℄ = H) ^̂̂ During [(3; 39)℄ ([Reset℄ = L)
The formula asks if the clock is low for 10ns, then high for 10ns, then low for 10ns, and then high
for 10ns; and whether the reset line is high for 3 ns (time 0 through 2 inclusive), and then low from
time 3 to time 39.

2.2 Specification of systems

The specification of a system’s nominal behaviour is given bya set of assertions. Each assertion consists
of a pair of TL formulas, and is written like this:hg==�hi. If a modelM satisfies this assertion, in
every run of the system in whichg is true,h is true too.g, theantecedent, can be thought of as supplying
the ‘input’ or ‘stimulus’ to the circuit, whileh, theconsequentis the expected reaction to the stimulus.
Where necessary we writeM j= hg==�hi to emphasise that the assertion is about modelM.

Both functional and timing properties can be specified this way. For example, the following specifica-
tion could describe the behaviour of a multiplication circuit, describing the result (including bit-widths),
when the inputs must be stable and when the output will be stable:During [(0; 9); (20; 29)℄ ([Clk = L℄) ^̂̂ During [(10; 19); (30; 39)℄ ([Clk = H℄) ^̂̂During [(0; 39)℄ [A℄ = x[7� 0℄ ^̂̂[B℄ = y[7� 0℄ ^̂̂=) During [(35; 39)℄ [C℄ = (x� y)[15� 0℄

Significant technical detail has been omitted here. For example, the state space is a lattice – which
is used for abstraction – and the truth domain is a four-valued logic rather than a boolean one. Partly
the omission is for space reasons, but also because the methodology of verifying fault tolerance systems
proposed here does not rely on the particular temporal logicused, or the model-checking algorithm used.
Interested readers should consult [9, 10].

2.3 Symbolic Trajectory Evaluation and the VossProver Verification system

Symbolic trajectory evaluation (STE) is a model-checking algorithm due Bryant and Seger [17], and
extended by Hazelhurst and Seger [9]. It is particularly suited for hardware verification, especially
where accurate models of system behaviour, including timing are important. STE has a complementary
compositional theory, and has been applied to a range of different circuits [9].

The VossProver verification system is built on top of Seger’sVoss system [16]. The Voss system
consists of three major components: an efficient implementation of binary decision diagrams [5]; an

3



event driven symbolic simulator with comprehensive delay and race analysis capabilities; and a general
purpose, functional language called FL. STE’s compositional theory has been implemented as a simple
proof system in the VossProver [8]. Using FL as a script language, a verifier can interact with the proof
system to either perform STE on a circuit or to use the compositional theory.

Circuits to be verified are represented internally as finite state machines. These FSMs are constructed
automatically from gate-level or switch-level circuit descriptions and a number of standard input formats
are supported. Voss also has its own format, called EXE. The FSM models that Voss builds are accurate
models of the circuits, including timing.

3 Specification and verification of fault tolerance

3.1 Specifying fault tolerance properties

A fault is modelled with two components: a trigger and a corresponding action. The idea is that the
circuit behaves normally, but that whenever the trigger is true, the behaviour of the circuit is modified (as
little as possible) so as to make the action true as well. To specify fault tolerance properties, assertions
are generalised to contain four pieces of information (the antecedent and consequent as before; a fault
trigger; and a fault action) and is denoted thusg==�h where � triggers � (called f-assertions).

Informally, the intended meaning ofg==�h where � triggers � is that in every run of the machineM, wheneverg is true, so ish whether or not the fault described by� triggers � occurs. Since the
antecedent, consequent, trigger and action may refer to thesame circuit components and variables (or
different ones), an f-assertion can express a variety of behaviours in the face of faulty and non-faulty-
behaviour.

In this framework, the trigger and the action can beanyTL formulas. However, the exploratory study
of Section 4 makes the following restrictions: only the non-temporal fragment of the logic can be used;
and the action must non-ambiguously describe the fault for any affected nodes in the circuit.

The primary motivation of this restriction is not so much ease of implementation and efficiency of
verification but simplicity of specification. The semanticsof what is meant when temporal operators
are used in both the trigger and action are tricky and requires some study. Examining the strengths and
weaknesses of just using the non-temporal fragment of the logic is a meaningful and useful start, and
indicates where extensions are necessary.

3.2 Modelling faults

So far we have modelled the finite state machine as if it were monolithic. In fact, for circuit models a
convenient and efficient way to model the circuit is to represent the state of the system as a tuple, with
each node (state-holding component) in the circuit making up one component of the tuple. Thus, if a
circuit hasn components, thenS = Cn whereC is the set of values that an individual component can take.
Similarly, the next-state function is decomposed inton next-state functions, one for each component. So,
if s = hs1; : : : ; sni, Y(s) = hY1(s); : : : ; Yn(s)i, with eachYi being of typeS ! C. For convenience
we name each node by its index in the tuple description of the state space.

Let � triggers � be a fault. LetFA be the set of nodes that are described in� and for each nodej 2 FA, let vj be the value required for� to be true. We modify eachYi so that it reflects the faulty
behaviour if it happens.

Formally, defineŶi(s) def= (Yi(s) i =2 FAombine(Yi(s); vj) i 2 FA;
whereombine combines the correct value and the faulty value in the appropriate way. If�(s) is false,ombine produces the correct result; if�(s) is true, ombine produces the faulty value. (The actual
implementation ofombine is more complex than described here to take into account the lattice state-
space: readers familiar with STE should note thatombine is monotonic.

4



The global next state function that takes into account the fault is dY(s) def= hŶ1(s); : : : ; Ŷn(s))i.
Finally, we can define our ‘faulty’ FSM to beM def= (S; bY).

Note that if all temporal logic formulas were allowed in fault descriptions, then the definitions pre-
sented here would need to be generalised. This is a topic of further research.

Semantics of an f-assertion: Given a modelM, the formal semantics of an f-assertiong==�h where � triggers � is given byM j= g==�h where � triggers � def= M j= hg==�hi:
3.3 Verifying f-assertions

The verification of f-assertions is accomplished by combining STE and the idea of saboteurs presented
in [1]. The basic idea is as follows:� Suppose we wish to showM j= g==�h where � triggers �;� Construct an observer machineMO able to observe the state ofM. WhenMO detects that� is

true of the current state ofM, it sets an internal flag to trigger the fault (see also [2, 6] for other
work which has used the idea of observers);� Construct a saboteur machineMS that can inject the fault intoM. WhenMO triggers the fault,
the saboteur ‘hijacks’ the machineM and injects the fault described by�.� A new machineM, which is the composition ofM,MO andMS is constructed.� We verify M j= hg==�hi.

All the constructions described above are done automatically and the only human intervention required
is the provision of the circuit description and the f-assertion. The algorithms that perform these construc-
tions and compositions have been implemented in the VossProver system.

4 A case study

This section explores the methodology presented in the previous sections through a case study. The
system chosen as a case study is presented in [12] and described in detail in [4]. The overall architecture
of the system is presented in Figure 1.

network

S1

�actuator?sensor

S2

�actuator?sensor

S3

�actuator?sensor

Figure 1: Overall architecture of system

The system hasn channels(here, 3 channels, labelledS1, S2 and S3). Each channel communicates
with its environment, taking in data from sensors and then issuing commands to actuators. The channels

5



communicate with each other on a network. The basic premise of this system is that by implementing
the system withn channels, the system is able to tolerate faults, either of sensors or of the channels
themselves.

The channels operate the same protocol (described in detailin [4]). In each round of operation the
channels all go through 11 phases, and one of the channels acts as master. The protocol works by each
channel reading its own sensor data, broadcasting its sensor data to the other channels, followed by
a process of agreeing on the data to be used and the result produced. There is also a mechanism for
electing a new master.

Fault tolerance is also provided internally. Each channel consists of twonodesand an internal con-
nection. One node is thecontrol nodethat actually performs the above steps. Themonitor nodeperforms
exactly the same steps, except that it does not communicate its results outside the channel. However, if
the monitor and control produce different results, there issimple circuitry that disconnects the channel
from the external network, ensuring fail-safe behaviour. Also, if either the control or monitor do not read
inputs quickly enough, the channel will be extracted from the circuit. There is an error state into which
a channel goes if such problems are detected; a channel only moves out of the error state if reinitialised.

The implementation examined here was based on the design described and used in [4]. That imple-
mentation was given in behavioural VHDL. The design was translated into Voss EXE format (essentially
a gate-level description). Though the translation was doneby hand, in principle this step could be au-
tomated. The major difference between the behavioural VHDLand EXE implementations is the way
in which time is dealt with. In behavioural VHDL, it is possible to describe behaviour like ‘wait10�s’
directly, which is not possible at the gate-level. At the gate-level a clock has to be introduced to deal
with time. For convenience of specification, only one clock is used in this implementation, but it would
be straightforward (though the specification would be more cluttered) for each channel to have its own
clock. For the version of the system where data and addressesare 32-bit numbers, the circuit had over
100 000 gates and 10 000 state-holding components (the implementation is rather crude!).

4.1 Verification of nominal behaviour

The specification and verification of the nominal behaviour of this system (i.e. the behaviour without
faults) is an interesting exercise in its own right. However, as the main point of this paper is the specifi-
cation and verification of fault-tolerant behaviour only a few points are sketched here. More detail can
be found in [7].

A complete specification requires many assertions to be given. In the case study, six sample assertions
were verified. The two basic goals were to show that:� When the system is initialised, the first channel initialised is declared master, and the first round

of operation is correct.� If at the beginning of a round the system is in a consistent state, and one of the channels is the
master, then the circuit works correctly and ends the round in a consistent state.

Description of clock: As this circuit is clocked, we need to refer to the clock. The TL formula,
ClockAntis defined to do this. The clock goes up and down for 30 clock cycles each of 100ns; for the
first half of the cycle the clock is low and the second half it ishigh. Formally the definition is:

During [(0, 49), (100, 149), ..., (2900, 2949),(3000, 3049)] Clock = F and
During [(50, 99), (150, 199), ..., (2950, 2999),(3050, 3099)] Clock = T

Specifying the new master: The informal specification of the circuit is that at the end ofeach round,
that channel which had the sensor that produced the median value of all sensor values should be elected
master, i.e., if the channel picked the right value, it should be the master next round. This turned out
to be an interesting property to specify. A direct translation of the informal specification turns out to be
wrong since more than one channel can pick the same sensor value. Instead this property is specified as:

6



For each channel, if it is the master then it picked the medianvalue; and exactly one of the
channels is the master.

The formal definition is given by

During (2700, 2749)
(if_c S1cont:Pstatus then_c s1_got_med) & (if_c S2cont:Pstatus then_c s2_got_med) &
(if_c S3cont:Pstatus then_c s3_got_med) & exactly_one_master_active

whereSxcont:Pstatus is a flag that indicates whether channelx is the master. The auxiliary formula
s1_got_med is defined to bes1[3-0]= median [s1[3-0],s2[3-0],s3[3-0]] (and simi-
larly for channels 2 and 3).exactly_one_master is just the exclusive or of the status components
of each channel (the component has a high voltage if it is the master, a low voltage otherwise).

4.2 Verifying fault tolerance behaviour

As with the nominal behaviour, many aspects of the fault tolerance behaviour can be checked. A primary
criterion for a specification language is that it should allow the properties to be expressed in meaningful
and concise way. We need experience in specifying fault-tolerant behaviour and this is one of the goals of
the paper. The examples given below illustrate the type of fault tolerance properties that can be checked.

Stuck at faults: This is a fault which always occurs, or at some time becomes true always. Here is
an example of how such a fault can be modelled:t triggers ([S1contnwval℄ = f). This says that the
network validation signal of channel S1 is always false. We want to show that in this case, the other two
channels still work, and agree on the right value (in this implementation, the median of two numbers is
the minimum of two).

We define the antecedentAnt as

ClockAnt & network_signal=F & (During (0,10) S2init=T)&(During (11, 3099) S2init=F)&
(During (0,200)(S1init=T & S3init=T)) & (During (201,3099) S1init=F & S3init=F) &
(During (1500, 1599) S1input=s1[2-0] & S2input=s2[2-0] & S3input=s3[2-0])

This is the first result proved (here we assume that the outputis twice the sensor value agreed on by the
channels).

Ant==>>
During (2600, 2649)
S2output=2*min[s2[2-0],s3[2-0]][3-0] and S3output=2*min[s2[2-0],s3[2-0]][3-0]

Fault assumption: stuck at fault : S1contnwval = F

Expressing relationships In the above example, the consequent is too strong in one way —another
implementation might choose the maximum of two values as themedian. In another sense it is too weak,
since it does not really make explicit the notion of fault tolerance that we want. Here is an alternative
result — logically weaker than the previous one, but it givesa more meaningful result. The essence of
this result is: provided the sensor values are within a certain range of each other, then the output of the
two working channels will be within some acceptable range from the median of all three sensor values.

Ant ==>>
During [(2600, 2649)] if_c well_behaved_sensors then_c well_behaved_output

Fault assumption: stuck at fault : S1contnwval = F

wherewell_behaved_sensors is defined to be:

diff [max [s1[2-0],s2[2-0],s3[2-0]],min [s1[2-0],s2[2-0],s3[2-0]]] < delta[2-0]

andwell_behaved_output is defined as

7



diff [S2output,(2*median [s1[2-0],s2[2-0],s3[2-0]])[3-0]] < 2*delta[2-0]

Provided the difference between the maximum and the minimumof the sensor values isÆ (for any 3-bit
numberÆ), then the output value of S2 (and analogously S3) will be within 2Æ of the median of the right
result if S1 fails (i.e., if S1 fails, S2 and S3 will be almost right). Æ is symbolic – i.e., we verify the
result for all values ofÆ within a certain range. Also note the care that has to be takenin specifying
the bit-widths of the numbers concerned. Again there is sometedium here and it certainly clutters the
specification, but it is a detail that needs to be taken care of(since the desired fault-tolerant result is not
true if Æ is too large, because the system does finite arithmetic). Therefore, the specification precisely
describes the fault tolerance limitations.

Triggering faults on input values: The antecedent here is the same as for the stuck at fault. But here,
we assert that the fault is only triggered for some values of the input. The consequent then shows that if
the fault is triggered we get one result, while if it is not triggered we see the nominal behaviour (‘7’ is
used as the synchronisation signal on the network.)

Ant ==>>
During [(2600, 2649)]

S2output = if (s1[2-0] = 7) then (2*min [s2[2-0],s3[2-0]])[3-0]
else (2*median [s1[2-0],s2[2-0],s3[2-0]])[3-0]

Fault assumption --- Trigger : s1[2-0] = 7; Fault : S1contnwval = F.

Triggering faults on state information: Faults can also be triggered on state information. This is
useful when it is difficult to know when (or even if) a fault should be triggered using only input values or
time. In this example, we insert an error into S1 when it gets into a state in which it is about to broadcast
on the network (it broadcasts 0, rather the right sensor value). Note we force the same error into the
control and the monitor node (otherwise it would automatically get extracted from the circuit).

Ant ==>> During [(2600, 2649)] S2output = (2*median [0,s2[2-0],s3[2-0]])[3-0]
Fault assumption:
Trigger: S1cont:Pstinterchange and S1cont:Pmyid; Fault: S1contdata=0 and S1montdata=0

Verifying fault-checking components: At a lower level of abstraction some of the circuitry that imple-
ments the fault tolerance can, of course, be checked for its functional behaviour directly. For example, in
this circuit the monitor and control nodes check each other.We can show that the circuitry that performs
this checking will detect errors. This is straight-forward.

4.3 Computational cost

To assess the practical worth of using formal verification, we need to consider the computational cost,
since the computational costs are non-trivial. Of course, one must assess these costs in terms of the costs
of not finding errors. And it is often possible to verify smaller versions of design at early stages so that
even if the final verification takes many hours to run, during design and implementation the verification
algorithm can be used effectively. Nevertheless, computational costs are critical.

Table 1 shows the cost of verifying the nominal and FT behaviour. The largest circuit verified had
approximately 10000 state holding components and 150 000 gates. The verification was run on a 500
MHz Pentium II. Six nominal properties and six FT propertieswere verified, for four different versions
of the circuit (varying the datapath bit-width from 4 to 32).For each run, the size of the circuit and the
cost of the verifications is shown in the table.

The results show that the cost of verifying the circuit are well within the capacity of the VossProver
tool (especially if one considers the fact the figures are inflated by the overheads of loading the system,
building the circuit etc, which usually only has to be done once a session). The cost of verification
appears to grow more quickly than the number of gates (but still logarithmic in the size of the state
space, though a more through analysis is needed here).

8



Bit-width 4 8 16 32
Number of gates 26000 50000 85000 150000
Cost for nominal properties (s) 63 85 128 308
Cost for FT properties (s) 19 31 69 275

Table 1: Cost of verification of nominal and FT properties in seconds

Human cost: Specification requires significant human insight. The verification of all results shown
here is completely automatic (though this is not something that we can expect at this stage in general).

5 Conclusion

This paper has examined the use of formal methods in verifying fault-tolerant systems’ designs, present-
ing an approach to specifying and verifying fault-tolerantsystems. The logic used also allows a range
of fault conditions to be expressed. These fault conditionsare given as trigger-action pairs: the trig-
ger indicates when a fault will occur and the action says whattype of fault occurs. Using the ideas of
saboteurs [1], the method of symbolic trajectory evaluation can be generalised to be able to verify FT
properties.

A case study was performed to evaluate the proposed approach. Overall, the case study shows that
the approach is successful. The nominal behaviour of the circuit was verified, and then a range of FT
properties were examined including: stuck at faults; faults triggered by input values; and faults triggered
by state conditions.

In addition, the expected behaviour could be modelled exactly (e.g., the output isx) or approximately
(e.g., the output is within a certain range). It is also possible to verify directly that certain fault-monitoring
circuitry performs its task. The experimental results alsoshowed that the computational costs of STE
were quite reasonable.

Future research: There are a number of issues for future research:
Language for specifying fault tolerance:The case study explored the use of the non-temporal

fragment of TL for specifying the trigger-action pairs. This proved capable of expressing a range of
different behaviour. We need to do more case studies to get experience in what type of FT properties
need to be proved, in order to find where the limits are. It appears that allowing temporal operators in
both triggers and actions would be useful, and the frameworkof using observers and saboteurs should be
able to cope with the extension. One particular anticipateddifficulty is the specification of both absolute
and relative times in the fault specification.

Use for determining fault tolerance coverage:One interesting possibility is to generalise the spec-
ification of the fault and/or antecedent, expecting the verification to fail. The point of this is that the
information given by the VossProver explaining why the verification failed could be used to determine
fault tolerance coverage.

Compositional theory: A very important technique to overcome the state explosion problem that
bedevils symbolic model checking is the use of compositionality. STE has a simple but successful
compositional theory that has been implemented in the VossProver [8]. If we wish to use STE to deal
with fault tolerance we need to extend the theory for combining assertions to a theory that deals with
combining f-assertions.

Improving the performance of algorithms:And, of course, all algorithms can benefit from improve-
ment. Even though in the case study chosen the STE algorithm could easily prove the required assertions
and f-assertions, the insatiable demands for memory and CPUcycles needs to be met: : : .

9



Acknowledgements:

This work was funded in part by the South African National Research Foundation and the Centre National
de la Recherche Scientifique.

References
[1] J. Arlat, J. Boué, and Y. Crouzet. Validation-based Development of Dependable Systems.IEEE Micro, 19(4):66–79,

Jul-Aug 1999.

[2] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practical formal verification
of reactive hardware. In D.I. Dill, editor,CAV ’94: Proceedings of the Sixth International Conferenceon Computer Aided
Verification, Lecture Notes in Computer Science 818, pages 182–193, Berlin, June 1994. Springer-Verlag.

[3] C. Bernadeschi, A. Fantechi, S. Gnesi, and A. Santone. Formal validation of fault tolerance mechanisms. InDigest of
FastAbstracts of the 28th International Symposium on Fault-Tolerant Computing, pages 66–67. IEEE Computer Society
Press, 1998. http://www.chillarege.com/ftcs/fastabstracts/389.html.

[4] J. Boué.Test de la Tolérance aux fautes par injection de fautes dansdes modèles du simuation VHDL. PhD thesis, Institut
National Polytechnique de Toulouse, November 1997. LAAS Report 97503.

[5] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.ACM Computing Surveys,
24(3):293–318, September 1992.

[6] S. Hazelhurst. Compositional Model Checking of Partially-Ordered State Spaces. PhD thesis, University of British
Columbia, Department of Computer Science, 1996.

[7] S. Hazelhurst and J. Arlat. Specifying and verifying fault-tolerant hardware. LAAS Report 99514, Laboratoire d’Analyse
et d’Architecture des Systèmes, Centre National de la Recherche Scientifique, December 1999.

[8] S. Hazelhurst and C.-J.H. Seger. A Simple Theorem ProverBased on Symbolic Trajectory Evaluation and BDD’s.IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(4):413–422, April 1995.

[9] S. Hazelhurst and C.-J.H. Seger. Symbolic Trajectory Evaluation. In Kropf [13], pages 3–79.

[10] S. Hazelhurst and C.-J.H. Seger. Model checking lattices: Using and reasoning about information orders for abstraction.
Logic Journal of the IGPL, 7(3):375–411, May 1999.

[11] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.Computer, 30(4):75–82, April 1997.

[12] H. Kopetz. The time-triggered approach in real-time system design. In B. Randell, J.-C. Laprie, H. Kopetz, and B. Little-
wood, editors,Predictably Dependable Computing Systems, Basic Research, pages 53–66. Springer, 1995.

[13] T. Kropf, editor. Formal Hardware Verification: Methods and Systems in Comparison. State of the Art Survey Lecture
Notes in Computer Science 1287. Springer-Verlag, Berlin, 1997.

[14] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal Verification for Fault-Tolerant Architectures: Prolegomena to
the Design of PVS.IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.

[15] J. Rushby. Systematic Formal Verification for Fault-Tolerant Time-Triggered Algorithms.IEEE Transactions on Software
Engineering, 25(5):651–660, 1999.

[16] C.-J.H. Seger. Voss — A Formal Hardware Verification System User’s Guide. Technical Report 93-45, De-
partment of Computer Science, University of British Columbia, November 1993. Available by anonymous ftp as
ftp://ftp.cs.ubc.ca/pub/local/techreports/1993/TR-93-45.ps.gz.

[17] C.-J.H. Seger and R.E. Bryant. Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories.Formal
Methods in Systems Design, 6:147–189, March 1995.

[18] M. Sheeran and G. Stålmarck. A tutorial on Stålmarck’s procedure for propositional logic.Formal Methods in System
Design, 16(1):23–58, January 2000.

10


