

		ELEN2006 - Microprocessors		
	7.09 V	8		
		6		
		5		
		3 -		
		2 -		
		1		
		o		
				• •
	Clock cycle	SAR Bits	Bit sum	Voltage ref
	Clock cycle 0	SAR Bits 01111111	Bit sum 127	Voltage ref 4.9804
	Clock cycle 0 1	SAR Bits 01111111 10111111	Bit sum 127 127 + 64 = 191	Voltage ref 4.9804 7.4901
	Clock cycle 0 1 2	SAR Bits 01111111 10111111 10011111	Bit sum 127 127 + 64 = 191 191 - 32 = 159	Voltage ref 4.9804 7.4901 6.2353
	Clock cycle 0 1 2 3	SAR Bits 01111111 10111111 10011111 10101111	Bit sum 127 127 + 64 = 191 191 - 32 = 159 159 + 16 = 175	Voltage ref 4.9804 7.4901 6.2353 6.8627
	Clock cycle 0 1 2 3 4	SAR Bits 01111111 10111111 10011111 10101111 10110111	Bit sum 127 $127 + 64 = 191$ $191 - 32 = 159$ $159 + 16 = 175$ $175 + 8 = 183$	Voltage ref 4.9804 7.4901 6.2353 6.8627 7.1765
NOT Electropy	Clock cycle 0 1 2 3 4 5	SAR Bits 01111111 10111111 10011111 10101111 10110011	Bit sum 127 $127 + 64 = 191$ $191 - 32 = 159$ $159 + 16 = 175$ $175 + 8 = 183$ $183 - 4 = 179$	Voltage ref 4.9804 7.4901 6.2353 6.8627 7.1765 7.0196
	Clock cycle 0 1 2 3 4 5 6	SAR Bits 01111111 10111111 10011111 10101111 10110011 10110101	Bit sum 127 $127 + 64 = 191$ $191 - 32 = 159$ $159 + 16 = 175$ $175 + 8 = 183$ $183 - 4 = 179$ $179 + 2 = 181$	Voltage ref 4.9804 7.4901 6.2353 6.8627 7.1765 7.0196 7.0980

D/A converters

> Resolution

• 8- bit \rightarrow 2⁸ = 256 values of output range \rightarrow 0.4 %

> Linearity

Precision of the input-output relationship (next slide)

Accuracy

- Difference between expected vs measured output
 - 10 V full scale accuracy of 0.2% max error = 20 mV

Settling time (D/A converter)

• Time required to settle to within ± 1/2 LSB

> Temperature sensitivity

Temperature affects – V_{ref}, Resistors, Op amps, change ± ppm/°C

I/O Ports

Ports have two control registers

- TRIS sets whether each pin is an input or output
- PORT sets their output bit levels
- Most pins have 25mA source/sink (LED enabled)
- Floating input pins draw current! Tie off your pins (or set them to outputs).

I/O

- Parallel data communications
- Serial data communications
- Data transmission
 - Synchronous
 - Asynchronous
- > UART Parallel \rightarrow Serial (Baud rate)
 - Parity bit?
- RS 232 single data line in and out
- Several Electricity
- ➢ RS 422 differential signal twisted pair

$I/O \rightarrow Peripheral devices$

Application

- Human
 - Alphanumeric + special mathematical sysmbols
 - Keyboard + display
 - Slow
- Machine
 - Different codes
 - High speeds

Pitfalls in design

- Peripheral Resource Sharing Some functions require using the same resource: eg, some of the PWM modules use TMR2, which may also be used in the USART module.
- Peripheral Pin sharing Pins may share functions. eg, a GPIO will share a pin with a UART module (say the TX line). You CAN'T use one pin for two functions! You *must* choose between them.

