
ELEN 4017

Network Fundamentals

Lecture 8

Purpose of lecture

Chapter2: Application Layer

 Principles of network applications

Creating a network app

write programs that

 run on (different) end systems

 communicate over network

 e.g., web server software

communicates with browser

software

No need to write software for

network-core devices

 Network-core devices do not

run user applications

 applications on end systems

allows for rapid app

development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

 Client-server

 Peer-to-peer (P2P)

 Hybrid of client-server and P2P

Client-server architecture
server:

 always-on host

 permanent IP address

 server farms for

scaling

clients:

 communicate with server

 may be intermittently

connected

 may have dynamic IP

addresses

 do not communicate

directly with each other

client/server

Pure P2P architecture

 no always-on server

 arbitrary end systems

directly communicate

 peers are intermittently

connected and change IP

addresses

Highly scalable but difficult

to manage

peer-peer

Hybrid of client-server and

P2P
Skype

 voice-over-IP P2P application

 centralized server: finding address of remote
party:

 client-client connection: direct (not through
server)

Instant messaging

 chatting between two users is P2P

 centralized service: client presence
detection/location

 user registers its IP address with central
server when it comes online

 user contacts central server to find IP
addresses of buddies

Processes communicating

Process: program running

within a host.

 within same host, two

processes

communicate using

inter-process

communication

(defined by OS).

 processes in different

hosts communicate by

exchanging messages

Client process: process

that initiates

communication

Server process: process

that waits to be

contacted

 Note: applications with

P2P architectures have

client processes &

server processes

Sockets

 process sends/receives

messages to/from its socket

 socket analogous to door

 sending process shoves

message out door

 sending process relies on

transport infrastructure on

other side of door which

brings message to socket at

receiving process

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

 API: (1) choice of transport protocol; (2) ability to fix

a few parameters (lots more on this later)

Addressing processes
 to receive messages,

process must have

identifier

 host device has unique

32-bit IP address

 Q: does IP address of

host suffice for

identifying the process?

Addressing processes

 to receive messages,

process must have

identifier

 host device has unique

32-bit IP address

 Q: does IP address of

host on which process

runs suffice for identifying

the process?

 A: No, many processes

can be running on

same host

 identifier includes both IP

address and port numbers

associated with process on

host.

 Example port numbers:

 HTTP server: 80

 Mail server: 25

 to send HTTP message to

gaia.cs.umass.edu web

server:

 IP address:

128.119.245.12

 Port number: 80

 more shortly…

App-layer protocol defines

 Types of messages

exchanged,

 e.g., request, response

 Message syntax:

 what fields in messages &

how fields are delineated

 Message semantics

 meaning of information in

fields

 Rules for when and how

processes send &

respond to messages

Public-domain protocols:

 defined in RFCs

 allows for

interoperability

 e.g., HTTP, SMTP

Proprietary protocols:

 e.g., Skype

RFC793 – TCP

What transport service does an app need?

Data loss

 some apps (e.g., audio)
can tolerate some loss

 other apps (e.g., file
transfer, telnet) require
100% reliable data

transfer

Timing

 some apps (e.g.,
Internet telephony,
interactive games)
require low delay to
be “effective”

Throughput

 some apps (e.g.,

multimedia) require

minimum amount of

throughput to be

“effective”

 other apps (“elastic

apps”) make use of

whatever throughput they

get

Security

 Encryption, data integrity,

…

Transport service requirements of common apps

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

instant messaging

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

Internet transport protocols services

TCP service:

 connection-oriented: setup

required between client and

server processes

 reliable transport between

sending and receiving process

 flow control: sender won’t

overwhelm receiver

 congestion control: throttle

sender when network

overloaded

 does not provide: timing,

minimum throughput

guarantees, security

UDP service:

 unreliable data transfer

between sending and

receiving process

 does not provide:

connection setup,

reliability, flow control,

congestion control,

timing, throughput

guarantee, or security

Q: why bother? Why is

there a UDP?

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (eg Youtube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

