ELEN 4017

Network Fundamentals Lecture 31

Purpose of lecture

- Data Link Layer
 - Link-layer devices
 - Course summary

Hubs

... physical-layer ("dumb") repeaters:

- bits coming in one link go out all other links at same rate
- all nodes connected to hub can collide with one another
- no frame buffering
- no CSMA/CD at hub: host NICs detect collisions

Switch

- link-layer device: smarter than hubs, take
 active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: allows *multiple* simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and Bto-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

Switch Table

- <u>Q</u>: how does switch know that A' reachable via interface 4, B' reachable via interface 5?
- <u>A</u>: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!
- <u>Q:</u> how are entries created, maintained in switch table?
 - something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60

Switch table (initially empty)

Switch: frame filtering/forwarding <u>When frame received:</u>

- 1. record link associated with sending host
- 2. index switch table using MAC dest address
- 3. if entry found for destination
 then {
 - if dest on segment from which frame arrived then drop the frame

else forward the frame on interface indicated

forward on all but the interface on which the frame arrived

Self-learning, forwarding: example

- frame destination unknown: *flood*
- destination A location known: selective send

MAC addr	interface	TTL
A	1	60
A'	4	60

Switch table (initially empty)

Interconnecting switches

• switches can be connected together

- <u>Q</u>: sending from A to G how does S₁ know to forward frame destined to F via S₄ and S₃?
- <u>A</u>: self learning! (works exactly the same as in single-switch case!)

Institutional network

Switches vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

Purpose of lecture

- Data Link Layer
 - Link-layer devices
 - Course summary

What we've covered

- Overview of networking
- **Applications** and the application layer (web, email, file sharing, video)
- **Transport** layer (Reliable transfer, FSM, flow control, shortcomings)
- **Network layer** (Routing, forwarding, hierarchies)
- Link layer (Multiple access, Ethernet LANs, switches)

What remains

- Wireless communications:
 - Wifi, GSM, GPRS, 3G, Wimax
- Multimedia networking
 - Improving internet behaviour to provide quality guarantees
- Security SSL, TLS, certificates, ...

A career in networking

- Certifications in IT / Communications industry.
- Specialist roles Cisco / Nortel.
- Networking underpins most IT systems today, so the knowledge is very useful for an Information Engineer

http://www.globalknowledge-eg.com/images/cisco_pyramide2.png

That's all folks

