Frequency Domain Analysis of Signals and Systems

ELEN 3024 - Communication Fundamentals

School of Electrical and Information Engineering, University of the Witwatersrand

July 15, 2013

Amplitude Modulation

Proakis and Salehi, "Communication Systems Engineering" (2nd Ed.), Chapter 2

Overview

Power and Energy

2.3 Power and Energy

Energy and power of signal representatives of energy or power delivered by the signal when signal is interpreted as voltage or current feeding $\bf 1$ ohm resistor

Energy content of a signal:

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$

Power content of signal

$$P_{\mathsf{x}} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |\mathsf{x}(t)|^{2} \mathsf{d}t$$

2.3 Power and Energy

A signal is energy-type if $\mathcal{E}_{\scriptscriptstyle X} < \infty$

A signal is power-type if $0 < P_x < \infty$

Signal cannot be both power- and energy-type

Energy-type signals $ightarrow P_{x} = 0$

Power-type signals $ightarrow \mathcal{E}_{\scriptscriptstyle X} = \infty$

Signal can be neither energy-type nor power-type

2.3 Power and Energy

Most of the signals of interest either energy-type or power-type

All periodic signals are power-type:

$$P_{\scriptscriptstyle X} = rac{1}{T_0} \int_{lpha}^{lpha + T_0} |x(t)|^2 \mathrm{dt}$$

2.3.1. Energy-Type Signals

Energy-type signal x(t), autocorrelation function $R_x(\tau)$

$$R_{x}(\tau) = x(\tau) \star x^{*}(-\tau)$$

$$= \int_{-\infty}^{\infty} x(t)x^{*}(t-\tau)dt$$

$$= \int_{-\infty}^{\infty} x(t+\tau)x^{*}(t)dt$$

By setting $\tau = 0$, we obtain energy content:

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$
$$= R_{x}(0)$$

Fourier transform of $R_{\mathsf{x}}(\tau) \Leftrightarrow |X(f)|^2$

$$\therefore \mathcal{E}_{x} = \int_{-\infty}^{\infty} |x(t)|^{2} dt$$
$$= \int_{-\infty}^{\infty} |X(f)|^{2} df$$

2.3.1. Energy-Type Signals

Thus, two methods for finding the energy in a signal.

- Use $x(t) \rightarrow$ time domain
- $X(f) \rightarrow$ frequency representation

$$\mathcal{G}_{x}(f)=\mathcal{F}[R_{x}(au)]=|X(f)|^{2} o$$
 energy spectral density of the signal $x(t)$

 $\mathcal{G}_{x}(f)$ represents the amount of energy per hertz of bandwidth present in the signal at various frequencies.

Time-average autocorrelation function of the power-type signal x(t):

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t-\tau) dt$$

Power content of the signal can be obtained from

$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt$$
$$= R_x(0)$$

Define $\mathcal{S}_{\mathsf{x}}(f)$ (power-spectral density) $\to \mathcal{S}_{\mathsf{x}}(f) = \mathcal{F}[R_{\mathsf{x}}(\tau)]$

Can express power content of signal x(t) in terms of $S_x(f)$ by noting:

$$R_{x}(0) = \int_{-\infty}^{\infty} S_{x}(f) df$$

$$\therefore P_{x} = R_{x}(0)$$

$$= \int_{-\infty}^{\infty} S_{x}(f) df$$

If power-type signal x(t) is passed through filter with impulse response h(t), the output is

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Time-average autocorrelation function for output:

$$R_y(au) = \lim_{T o \infty} rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} y(t) y^*(t- au) \mathrm{d}t$$

Substituting for y(t)

$$R_{y}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left[\int_{\infty}^{-\infty} h(u)x(t-u) du \right] \left[\int_{-\infty}^{\infty} h^{*}(v)x^{*}(t-\tau-v) dv \right] dt$$

Change of variables w = t - u

$$R_{y}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{-\infty} h(u)h^{*}(v)$$

$$\times \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2} - u}^{\frac{T}{2} + u} [x(w)x^{*}(u + w - \tau - v)dw] du dv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{x}(\tau + v - u)h(u)h^{*}(v)du dv$$

$$= \int_{-\infty}^{\infty} [R_{x}(\tau + v) \star h(\tau + v)] h^{*}(v)dv$$

$$= R_{x}(\tau) \star h(\tau) \star h^{*}(-t)$$

Take Fourier transform on both sides

$$S_y(f) = S_x(f)H(f)H^*(f)$$

= $S_x(f)|H(f)|^2$

For periodic signals \rightarrow time-average autocorrelation function + power spectral density simplify

assume x(t) periodic (period T_0 + Fourier series coefficients $\{x_n\}$)

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) x^{*}(t - \tau) dt$$

$$= \lim_{k \to \infty} \frac{1}{kT_{0}} \int_{-kT_{0}/2}^{kT_{0}/2} x(t) x^{*}(t - \tau) dt$$

$$= \lim_{T \to \infty} \frac{k}{kT_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t - \tau) dt$$

$$= \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t) x^{*}(t - \tau) dt$$

Substitute the Fourier series expansion of periodic signal:

$$R_{x}(\tau) = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x_{n} x_{m}^{*} e^{j2\pi \frac{m}{T_{0}} \tau} e^{j2\pi \frac{n-m}{T_{0}} \tau} dt$$

Using fact that

$$\frac{1}{T_0} \int_{-T_0/2}^{T_0/2} e^{j2\pi \frac{n-m}{T_0}} dt = \delta_{m,n}$$

We obtain

$$R_{x}(\tau) = \sum_{n=-\infty}^{\infty} |x_{n}|^{2} e^{j2\pi \frac{n}{T_{0}}t}$$

$$R_{x}(\tau) = \sum_{n=-\infty}^{\infty} |x_{n}|^{2} e^{j2\pi \frac{n}{T_{0}}t}$$

Time-average autocorrelation function of periodic signal is itself periodic, with same period as original signals

Fourier series coefficients \rightarrow magnitude squares of Fourier coefficients of original signal

Power-spectral density \rightarrow Fourier transform of $R_x(\tau)$

Dealing with periodic function \to Fourier transform consists of impulses in frequency domain.

$$S_{x}(f) = \sum_{n=-\infty}^{\infty} |x_{n}|^{2} \delta(f - \frac{n}{T_{0}})$$

To find power content, integrate over whole frequency spectrum

$$P_{\mathsf{x}} = \sum_{n=-\infty}^{\infty} |x_n|^2$$