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Strong algebraic properties of cyclic codes → easy encoded and
decoded
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Particularly efficient for error detection.

Cyclic codes contains important subclass of codes referred to as
CRC codes
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2. Description of cyclic codes

v = (v0, v1, . . . , vn−1) ∈ Zn

Cyclic Shift

v (1) = (vn−1, v0, v1, . . . , vn−2) → cyclic shift of v .

v (i) = (vn−i , . . . , vn−1, v0, . . . , vn−i−1) → components of v shifted
i positions forward

(n, k) Cyclic Code

(n, k) linear code C → Every cyclic shift of every codeword is
again a codeword in C .



3. The ring Z2[x ]/ < xn + 1 >

Polynomial ring: Z2[x ]/ < xn + 1 >

a(x) ≡ b(x) mod (xn + 1) if (xn + 1)|a(x)− b(x).

[a(x)] = {b(x) ∈ Z2[x ] : a(x) ≡ b(x) mod (xn + 1)}

Z2[x ]/ < xn + 1 >= {[a(x)] : a(x) ∈ Z2[x ]} forms a ring under
multiplication and addition.



3. The ring Z2[x ]/ < xn + 1 >

Note that xn ≡ 1 mod (xn + 1), because xn − 1 = xn + 1

∴ [xn] = [1]

Furthermore, xn+1 ≡ x mod (xn + 1), because
xn+1 − x = xn+1 + x = x(xn + 1)

∴ [xn+1] = [x ], etc.

[a(x)] is simply written as a(x)



3. The ring Z2[x ]/ < xn + 1 >

using shorthand notation: a(x) = b(x) if xn + 1|a(x)− b(x)

Ring Z2[x ]/ < xn + 1 > contains all polynomials of degree less
than n.

This ring has 2n elements.

if a(x) = q(x)(xn + 1) + r(x), then
a(x) = r(x) ∈ Z2[x ]/ < xn + 1 >



4. The relation between Zn
2 and

Z2[x ]/ < xn + 1 >

1-to-1 correspondence between Zn
2 and Z2[x ]/ < xn + 1 >

v = (v0, v1, . . . , vn−1) 7→ v(x) = v0 + v1x + v2x
2 + . . . + vn−1x

n−1

v(x) → code polynomial, if v → codeword.

x iv(x) = v (i)(x) ∈ Z2[x ]/ < xn + 1 >



4. The relation between Zn
2 and

Z2[x ]/ < xn + 1 >

Minimum degree polynomial is unique

(n, k) cyclic codeword

Code polynomial g(x) = g0 + g1x + . . . + gr−1x
r−1 + x r

Minimum degree → unique

g(x) → g0 = 1.

Go through proof on own time



4. The relation between Zn
2 and

Z2[x ]/ < xn + 1 >

Multiples of g(x) forms codewords

g(x) = 1 + g1x + g2x
2 + . . . + gr−1x

r−1 + x r

Deg(g(x)) → minimum degree in code C

C = {a(x)g(x) ∈ Z2[x ]/ < xn + 1 >: a(x) ∈ Z2[x ]}.

Go through proof on own time



5. Example

Messages Codewords Code polinomials

(0 0 0 0) (0 0 0 0 0 0 0) 0 = 0 · g(x)
(1 0 0 0) (1 1 0 1 0 0 0) 1 + x + x3 = 1 · g(x)
(0 1 0 0) (0 1 1 0 1 0 0) x + x2 + x4 = x · g(x)
(1 1 0 0) (1 0 1 1 1 0 0) 1 + x2 + x3 + x4 = (1 + x) · g(x)
(0 0 1 0) (0 0 1 1 0 1 0) x2 + x3 + x5 = x2 · g(x)
(1 0 1 0) (1 1 1 0 0 1 0) 1 + x + x2 + x5 = (1 + x2) · g(x)
(0 1 1 0) (0 1 0 1 1 1 0) x + x3 + x4 + x5 = (x + x2) · g(x)
(1 1 1 0) (1 0 0 0 1 1 0) 1 + x4 + x5 = (1 + x + x2) · g(x)
(0 0 0 1) (0 0 0 1 1 0 1) x3 + x4 + x6 = (x3) · g(x)
(1 0 0 1) (1 1 0 0 1 0 1) 1 + x + x4 + x6 = (1 + x3) · g(x)
(0 1 0 1) (0 1 1 1 0 0 1) x + x2 + x3 + x6 = (x + x3) · g(x)
(1 1 0 1) (1 0 1 0 0 0 1) 1 + x2 + x6 = (1 + x + x3) · g(x)
(0 0 1 1) (0 0 1 0 1 1 1) x2 + x4 + x5 + x6 = (x2 + x3) · g(x)
(1 0 1 1) (1 1 1 1 1 1 1) 1 + x + x2 + x3 + x4 + x5 + x6

= (1 + x2 + x3) · g(x)
(0 1 1 1) (0 1 0 0 0 1 1) x + x5 + x6 = (x + x2 + x3) · g(x)
(1 1 1 1) (1 0 0 1 0 1 1) 1 + x3 + x5 + x6 = (1 + x + x2 + x3) · g(x)



4. The relation between Zn
2 and

Z2[x ]/ < xn + 1 >

g(x) is a factor of xn + 1

The generator g(x) of a (n, k) cyclic code C is a factor of xn + 1.

Go through proof on own time

g(x) generates a cyclic code

Deg(g(x)) = n − k

g(x)|xn + 1
⇒ g(x) generates an (n, k) cyclic code.

xn + 1 → numerous factors of degree n − k

Some ‘good’ codes, others ‘bad’ codes



6. Systematic encoding of cyclic codes

1 u = (u0, u1, . . . , uk−1) → u(x) = u0 + u1x + . . . + uk−1x
k−1

2 xn−ku(x) = u0x
n−k + u1x

n−k+1 + . . . + uk−1x
n−1

3 xn−ku(x) = a(x)g(x) + b(x)

b(x) =

{
0 xn−ku(x) ∈ C
Deg(b(x)) < Deg(g(x)) xn−ku(x) /∈ C

4 b(x) + xn−ku(x) = a(x)g(x) → codeword

(b0, b1, . . . , bn−k−1, u0, u1, . . . , uk−1︸ ︷︷ ︸)
message



7. Example

x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).

Two factors of degree 3.

Each factor generates a (7, 4) cyclic code.



8. Generator Matrix

G =


g0 g1 g2 . . . . . . gn−k 0 0 . . . 0
0 g0 g1 g2 . . . . . . gn−k 0 . . . 0
0 0 g0 g1 . . . . . . . . . gn−k . . . 0
...

...
...

0 0 . . . 0 g0 g1 . . . . . . . . . gn−k


Generally, G not in systematic form



8. Parity-check Matrix

Consider polynomial h(x) of degree k → xn + 1 = g(x)h(x)

Define reciprocal of h(x) as:

xkh(x−1) , hk + hk−1x + hk−1x
2 + . . . + h0x

k .

H =


hk hk−1 hk−2 . . . . . . h0 0 0 . . . 0
0 hk hk−1 hk−2 . . . . . . h0 0 . . . 0
0 0 hk hk−1 . . . . . . . . . h0 . . . 0
...

...
...

0 0 . . . 0 hk hk−1 . . . . . . . . . h0

 .

H obtained from h(x) → h(x) - parity polynomial of C .



8. Parity-check Matrix

Dual Code of C
C → g(x)

Dual code → xkh(x−1), h(x) = (xn + 1)/g(x)

Dual code of C is also cyclic



9. The generator matrix of a cyclic code
in systematic form

Divide xn−k+i by g(x) for i = 0, 1, 2, . . . , k − 1

xn−k+i = a(x)g(x) + bi (x), with
bi (x) = bi0 + bi1x + bi2x

2 + . . . + bi ,n−k−1x
n−k−1

bi (x) + xn−k+i is a codeword in C .



9. The generator matrix of a cyclic code
in systematic form

bi (x) + xn−k+i is a codeword in C .

G =


b00 b01 b02 . . . b0,n−k−1 1 0 0 . . . 0
b10 b11 b12 . . . b1,n−k−1 0 1 0 . . . 0
b20 b21 b22 . . . b2,n−k−1 0 0 1 . . . 0

...
...

. . .
...

bk−1,0 bk−1,1 bk−1,2 . . . bk−1,n−k−1 0 0 0 . . . 1





9. The generator matrix of a cyclic code
in systematic form

Corresponding parity-check matrix for C is

H =


1 0 0 . . . 0 b00 b10 . . . bk−1,0

0 1 0 . . . 0 b01 b11 . . . bk−1,1

0 0 1 . . . 0 b02 b12 . . . bk−1,2
...

...
...

0 0 0 . . . 1 b0,n−k−1 b1,n−k−1 . . . bk−1,n−k−1





9. The generator matrix of a cyclic code
in systematic form

Corresponding parity-check matrix for C is

H =


1 0 0 . . . 0 b00 b10 . . . bk−1,0

0 1 0 . . . 0 b01 b11 . . . bk−1,1

0 0 1 . . . 0 b02 b12 . . . bk−1,2
...

...
...

0 0 0 . . . 1 b0,n−k−1 b1,n−k−1 . . . bk−1,n−k−1





10. Example

(7, 4) cyclic code generated by g(x) = 1 + x + x3.

Calculate the ith basis vector vi of G by dividing x3+i by g(x).

x3 = g(x) + (1 + x)

x4 = xg(x) + (x + x2)

x5 = (x2 + 1)g(x) + (1 + x + x2)

x6 = (x3 + x + 1)g(x) + (1 + x2).
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10. Example

v0(x) = 1 + x + x3

v1(x) = x + x2 + x4

v2(x) = 1 + x + x2 + x5

v3(x) = 1 + x2 + x6,



10. Example

G =


v0
v1
v2
v3

 =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

 .



11. Syndrome computation and error
detection

Syndrome calculation

r(x) = a(x)g(x) + s(x)

n − k coefficients of s(x) → syndrome s.

Go through proof on own time

Syndrome of cyclically shifted vector

s(x) syndrome of r(x) = r0 + r1x + . . . + rn−1x
n−1.

Remainder s(1)(x) → dividing xs(x) by g(x) = syndrome of r (1)(x)

Go through proof on own time



12. Error Correction

Syndrome decoding method is used to decode cyclic codes.



13. Error Correction - Example

(7, 4) cyclic code C generated by g(x) = 1 + x + x3.

dmin = 3

27 = 128 vectors in Z7
2

24 = 16 codewords in C → 128/16 = 8 cosets for C .

The seven single-error patterns and the all-zero vector form the
coset leaders of the decoding table.



13. Error Correction - Example

Table: Error patterns and the corresponding syndromes

Error pattern Syndrome

e0(x) = x0 = 1 s(x) = 1
e1(x) = x1 s(x) = x
e2(x) = x2 s(x) = x2

e3(x) = x3 s(x) = 1 + x
e4(x) = x4 s(x) = x + x2

e5(x) = x5 s(x) = 1 + x + x2

e6(x) = x6 s(x) = 1 + x2

r(x) = 1 + x + x4.
r(x) = xg(x) + x2 + 1 → s(x) = x2 + 1 → e6(x)
c(x) → r(x) + e6(x) = 1 + x + x4 + x6.
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14. Error Detection

Cyclic codes are very effective for detecting random as well as
burst errors.

Burst error
An error pattern e where all the errors are contained in l
consecutive positions is called a burst error of length l .

Example: error pattern (0 1 0 1 0 1 0 0) → burst error of length 5.



14. Error Detection

End-around burst
For a cyclic code, an error pattern with errors confined to i
high-order positions and l − i low-order positions is also regarded
as a burst of length l and is called an end-around burst.

Example: error pattern (0 1 0 1 0 0 1) → end-around burst of
length 5.



14. Error Detection

Burst error length

An (n, k) cyclic code is capable of detecting any error bursts of
length n − k or less, including the end-around bursts.
NB: Proof



14. Error Detection

bursts of length n − k + 1

The probability of an undetected error burst of length n − k + 1 is
2−(n−k−1).
(No Proof)



14. Error Detection

bursts longer than n − k + 1

The probability of an undetected error burst of length
l > n − k + 1 is 2−(n−k).
(No Proof)


