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1. Discrete Math

We will look at aspects of number theory that apply to
cryptography.

Discrete mathematics is a branch of mathematics that deals with
Integers only.



1. Discrete Math

1.1 Prime Numbers
Def - Prime Number: Any integer greater than one that only has 1
and itself as divisors

Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
. . .

Non-prime number is known as a composite

Fundamental theorem of arithmetic: every positive integer (except
1) can be represented in exactly one way as a product of one or
more primes (Hardy and Wright 1979, pp. 2-3).



1. Discrete Math

1.2 Greatest Common Divisor (GCD)

Largest integer d that divides a and b ∈ Z → Greatest Common
Divisor of a and b

Notation: d = GCD(a, b)

Example: GCD(12, 16) = 4

Euclidean algorithm can be used to determine GCD



1. Discrete Math

1.3 Relative Prime
Def - Relative prime: When GCD(a, b) = 1, a and b ∈ Z, then a
and b are relative prime (also coprime)

In other words, they share no common factors other than 1

Neither a and b need to be prime

Example: GCD(15, 28) = 1, thus 15 and 28 are relative prime



1. Discrete Math

1.4 The Euler Totient Function

Def - the totient ϕ(n) of a positive integer n is defined to be the
number of positive integers less than n that are relative prime to n.

ϕ(n) =

{
n − 1, n prime
(p − 1)(q − 1), n = pq with p and q prime

For first scenario, note that p (prime) has {1, 2, 3, . . . , p − 1} as
relative primes

Note that the second scenario only represents a small subset of the
composite numbers.



1. Discrete Math

1.5 Modular Arithmetic

Discrete maths operates only on integers (Z)

Modular arithmetic restricts results to a maximum modulo size

Modulus means remainder after division



1. Discrete Math

1.5 Modular Arithmetic

Def - Equivalence / Congruency: Two integers are equivalent
under modulus n if their results mod n are equal

Example: 16 mod 7 = 23 mod 7 → 16 ≡ 23 mod 7



1. Discrete Math

1.6 Properties of Modular Arithmetic

Modular arithmetic in non-negative integers forms a construct
called a commutative ring with the operation + and ×.

If every number other than 0 has an inverse under multiplication,
the group is called a Galois field. Example: The integers a mod p
forms a Galois field.

All rings have the properties of associativity and distributivity,
commutative rings also have commutativity.



1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Addition

+ 0 1 2 3 4
0
1
2
3
4



1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Addition

+ 0 1 2 3 4
0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3



1. Discrete Math

1.6 Properties of Modular Arithmetic

Additive identity → a + 0 = a for any a ∈ F

Additive inverse of an element in F :

a + (−a) = 0

Additive inverses:

• 0 × 0 mod 5 = 0

• 1 × 4 mod 5 = 0

• 2 × 3 mod 5 = 0



1. Discrete Math

1.6 Properties of Modular Arithmetic

Additive identity → a + 0 = a for any a ∈ F

Additive inverse of an element in F :

a + (−a) = 0

Additive inverses:

• 0 × 0 mod 5 = 0

• 1 × 4 mod 5 = 0

• 2 × 3 mod 5 = 0



1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Multiplication

× 0 1 2 3 4
0
1
2
3
4



1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Multiplication

× 0 1 2 3 4
0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1



1. Discrete Math

1.6 Properties of Modular Arithmetic

Multiplicative identity → a× e = a for any a ∈ F

e =

1

Multiplicative inverse of an element in F :

a× 1

a
= 1

Multiplicative Inverses:

• 1 × 1 mod 5 = 1

• 2 × 3 mod 5 = 1

• 4 × 4 mod 5 = 1
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1. Discrete Math

1.6 Properties of Modular Arithmetic
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= 1
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1. Discrete Math

1.7 Modulo Inverses

Finite field (Galois Field) → every element except 0 has
multiplicative inverse

Ring → not every element might have an inverse



1. Discrete Math

1.7 Modulo Inverses
Example: Multiplication Modulo 6

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

2,3 and 4 doesn’t have inverses under modulo 6 multiplication
2,3 and 4 not relative prime to 6

Modulo under a prime number → Field (Galois Field), every
nonzero element has an inverse



1. Discrete Math

1.7 Modulo Inverses
Example:

4 × λ ≡ 1 mod 7 → 4λ = 7k + 1, k ∈ Z

General Problem:

1 = (a × λ) mod n

a−1 ≡ λ mod n

For Example: 4−1 = 2 (F = x mod 5)



1. Discrete Math

1.8 Fermat’s Little Theorem
If p is a prime, and a is not a multiple of p:

ap−1 ≡ 1 mod p

Euler’s generalization:
if GCD(a, n) = 1:

aϕ(n) mod n = 1

To compute inverse x :

x = aϕ(n)−1 mod n

(Can also use Euclid’s algorithm)



1. Discrete Math

1.9 Properties of Modular Arithmetic
Associativity [a + (b + c)]mod n = [(a + b) + c] mod n

[a × (b × c)]mod n = [(a × b) × c] mod n

Commutativity (a + b) mod n = (b + a) mod n
(a × b) mod n = (b × a) mod n

Distributivity (a × (b + c)) mod n
= ((a × b ) + (a × c)) mod n

Identities (a + 0) mod n = (0 + a) mod n = a
(a × 1) mod n = (1 × a) mod n = a

Inverses (a + (-a)) mod n = 0
(a × a−1) mod n = 1

Reducibility (a + b) mod n
= ((a mod n) + (b mod n)) mod n
(a × b) mod n
= ((a mod n) × (b mod n)) mod n



1.10 Euclidean Algorithm

Not in the notes!

For any pair of positive integers a and b, we may find gcd(a, b) by
repeated use of division to produce a decreasing sequence of
integers r1 > r2 > · · · as follows.

a = bq1 + r1 0 < r1 < b,
b = r1q2 + r2 0 < r2 < r1,
r1 = r2q3 + r3 0 < r3 < r2,
...

...
rk−3 = rk−2qk−1 + rk−1 0 < rk−1 < rk−2,
rk−2 = rk−1qk + rk 0 < rk < rk−1,
rk−1 = rkqk+1 + 0



1.11 Extended Euclidean Algorithm

Not in the notes!

For any nonzero integers a and b, there exist integers s and t such
that gcd(a, b) = as + bt. Moreover, gcd(a, b) is the smallest
positive integer of the form as + bt.

Extended Euclidean Algorithm

ri = ri−2 −
⌊
ri−2

ri−1

⌋
· ri−1



1.11 Extended Euclidean Algorithm

Example: GCD(120,23)

Step Quotient Remainder Expression
1 120 120 = 120 × 1 + 23 × 0
2 23 23 = 120 × 0 + 23 × 1
3 5 5 5 = (120 × 1 + 23 × 0) - (120 × 0 + 23 × 1) × 5

5 = 120 × 1 + 23 × -5

4 4 3 3 = 23 - 5 × 4
3 = (120 × 0 + 23 × 1) -4(120 -5 × 23)
3 = 120 × -4 + 23 × 21

5 1 2 2 = 5 - 3 × 1
2 = (120 × 1 + 23 × -5) - (120 × -4 + 23 × 21)
2 = 120 × 5 - 23 × 26

6 1 1 1 = 3 - 2 × 1
1= (120 × -4 + 23 × 21) - (120 × 5 - 23 × 26)
1 = 120 × -9 + 23 × 47

7 2 0



1.11 Extended Euclidean Algorithm

Example: GCD(120,23)

Step Quotient Remainder Expression
1 120 120 = 120 × 1 + 23 × 0
2 23 23 = 120 × 0 + 23 × 1
3 5 5 5 = (120 × 1 + 23 × 0) - (120 × 0 + 23 × 1) × 5

5 = 120 × 1 + 23 × -5
4 4 3 3 = 23 - 5 × 4

3 = (120 × 0 + 23 × 1) -4(120 -5 × 23)
3 = 120 × -4 + 23 × 21

5 1 2 2 = 5 - 3 × 1
2 = (120 × 1 + 23 × -5) - (120 × -4 + 23 × 21)
2 = 120 × 5 - 23 × 26

6 1 1 1 = 3 - 2 × 1
1= (120 × -4 + 23 × 21) - (120 × 5 - 23 × 26)
1 = 120 × -9 + 23 × 47

7 2 0



1.11 Extended Euclidean Algorithm

Extended Euclidean Algorithm can be used to calculate the
multiplicative inverse of a number in a ring (if they exist)

From example: 1 = 120 × -9 + 23 × 46

Over the ring mod 120, 23 and 46 are multiplicative inverses of
each other
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