

Block Codes

Ling Cheng

School of Electrical and Information Engineering University of the Witwatersrand

Reed-Solomon

Outline

- Basics of Linear Block Codes
- 2 Hamming Codes
- 3 Irreducible, Primitive and Minimal Polynomials and Construction of the Galois Field
- 4 Reed-Solomon Codes
- 5 Low-Density Parity-Check Codes

Generator Matrix:

$$v = uG$$

$$G := (P \mid I_k)$$

Parity-Check Matrix

$$vH^{\mathcal{T}}=0$$

$$\mathbf{H} := \begin{pmatrix} \mathbf{I}_{n-k} & \mathbf{P}^T \end{pmatrix}$$

- Hamming Distance.
- Minimum Hamming Distance.

Generator Matrix:

$$v = uG$$

0

$$G := (P \mid I_k)$$

Parity-Check Matrix

$$vH^T = 0$$

$$\mathbf{H} := (\mathbf{I}_{n-k} \ \mathbf{P}^T)$$

- Hamming Distance.
- Minimum Hamming Distance.

Generator Matrix:

$$v = uG$$

0

$$G := (P \mid I_k)$$

Parity-Check Matrix:

$$vH^T = 0$$

$$\mathbf{H} := \begin{pmatrix} \mathbf{I}_{n-k} & \mathbf{P}^T \end{pmatrix}$$

- Hamming Distance.
- Minimum Hamming Distance.

Generator Matrix:

$$v = uG$$

0

$$G := (P \mid I_k)$$

Parity-Check Matrix:

$$vH^T = 0$$

•

$$\mathbf{H} := \begin{pmatrix} \mathbf{I}_{n-k} & \mathbf{P}^T \end{pmatrix}$$

- Hamming Distance.
- Minimum Hamming Distance.

Generator Matrix:

$$v = uG$$

$$G := (P \mid I_k)$$

Parity-Check Matrix:

$$vH^T = 0$$

U

$$\mathbf{H} := \begin{pmatrix} \mathbf{I}_{n-k} & \mathbf{P}^T \end{pmatrix}$$

- Hamming Distance.
- Minimum Hamming Distance.

Generator Matrix:

$$v = uG$$

$$G := (P \mid I_k)$$

Parity-Check Matrix:

$$vH^T = 0$$

u

$$\mathbf{H} := \begin{pmatrix} \mathbf{I}_{n-k} & \mathbf{P}^T \end{pmatrix}$$

- Hamming Distance.
- Minimum Hamming Distance.

Decoding Sphere

Figure:

- codeword length: $n = 2^m 1$
- length of information: $k = 2^m m 1$
- length of parity bits: n k = m
- $oldsymbol{d} d_{\min} = 3$

- codeword length: $n = 2^m 1$
- length of information: $k = 2^m m 1$
- length of parity bits: n k = m
- $oldsymbol{d} d_{\min} = 3$

- codeword length: $n = 2^m 1$
- length of information: $k = 2^m m 1$
- length of parity bits: n k = m
- $d_{\min} = 3$

- codeword length: $n = 2^m 1$
- length of information: $k = 2^m m 1$
- length of parity bits: n k = m
- $d_{\min} = 3$

- choose *m*;
- enumerate all binary sequences of length m from 0...01 to 1...1;
- create the parity-check matrix by filling these binary sequences in the matrix column by column;
- obtain the generator matrix.

- choose *m*;
- enumerate all binary sequences of length m from 0...01 to 1...1;
- create the parity-check matrix by filling these binary sequences in the matrix column by column;
- obtain the generator matrix.

- choose *m*;
- enumerate all binary sequences of length m from 0...01 to 1...1;
- create the parity-check matrix by filling these binary sequences in the matrix column by column;
- obtain the generator matrix

- choose *m*;
- enumerate all binary sequences of length m from 0...01 to 1...1;
- create the parity-check matrix by filling these binary sequences in the matrix column by column;
- obtain the generator matrix.

Example

Basics

$$\mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & | & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

Decoding Hamming Code

Given information $\mathbf{u} = 0001$, we sent the codeword

$$v = uG$$

$$= \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Decoding Hamming Code

As the result of one error, we receive

$$\mathbf{v}' = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

After the following calculation:

$$\mathbf{v}'\mathbf{H}^T = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $= \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$

Decoding Hamming Code

We find the syndrome sequence is same as the fifth row of \mathbf{H}^T . This leads to two discoveries:

- Obtection: there is error in the received sequence
- Orrection: if there is only one error, it must appear at the fifth position.

Therefore, we change the received sequence into

$$(1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1)$$

which is the correct codeword we send.

Basics of Linear Algebraic

- Irreducible Polynomial
- Primitive Polynomial
- Minimal Polynomial

$$f(x) = x^{2} + x + 1$$
$$x^{2} + x + 1 \neq (x + c_{1})(x + c_{2})$$
$$x^{2} + x + 1 = 1(x^{2} + x + 1)$$

Basics of Linear Algebraic

- Irreducible Polynomial
- Primitive Polynomial
- Minimal Polynomial

Irreducible polynomial with degree m divides $x^{2^m-1}+1$, for example, irreducible x^2+x+1 divides x^3+1 . The primitive polynomial divides polynomial x^n+1 with the minimum value $n=2^m-1$. α is the root of the primitive polynomial. Use primitive polynomial to construct Galois Field.

Basics of Linear Algebraic

- Irreducible Polynomial
- Primitive Polynomial
- Minimal Polynomial

 α^0 , α^1 , ..., α^{2^m-2} are the roots of $x^{2^m-1}+1=0$. Conjugate roots generate the minimum polynomial. For example, for $GF(2^4)$, α , α^2 , α^4 , α^8 are the conjugate roots. We have the minimal polynomial:

$$\Phi_1 = (x + \alpha)(x + \alpha^2)(x + \alpha^4)(x + \alpha^8) = x^4 + x + 1.$$

Basics

Construction of Galois Field

Table: Construction of a $GF(2^4)$ field by $h(x) = 1 + x + x^4$

Codeword	Polynomial in $x \pmod{h(x)}$	Power of α			
0000	0	_			
1000	1	1			
0100	X	α			
0010	x^2 x^3	α^2			
0001	x^3	α^3			
1100	1+x	α^2 α^3 α^4 α^5 α^6 α^7			
0110	$x + x^2$	α^{5}			
0011	$x^2 + x^3$	α^{6}			
1101	$1 + x + x^3$	α^7			
:	<u>:</u>	:			
1001	$1 + x^3$	α^{14}			

Minimum Polynomial

Table: Minimal polynomials of the elements in $GF(2^4)$

Elements of $GF(2^4)$ using $h(x)$	Minimal polynomial
0	X
1	x+1
α , α^2 , α^4 , α^8	$x^4 + x + 1$
α^3 , α^6 , α^9 , α^{12}	$x^4 + x^3 + x^2 + x + 1$
α^5 , α^{10}	$x^2 + x + 1$
α^7 , α^{11} , α^{13} , α^{14}	$x^4 + x^3 + 1$

- t error correcting codes;
- generator polynomial $g(x) = LCM\{\Phi_1(x), \Phi_2(x), \ldots\}$
- g(x) has roots α , α^1 , ..., α^{2t} ;
- Example of 2 error correcting BCH code:

- t error correcting codes;
- generator polynomial $g(x) = LCM\{\Phi_1(x), \Phi_2(x), \ldots\};$
- g(x) has roots α , α^1 , ..., α^{2t} ;
- Example of 2 error correcting BCH code:

- t error correcting codes;
- generator polynomial $g(x) = LCM\{\Phi_1(x), \Phi_2(x), \ldots\};$
- g(x) has roots α , α^1 , ..., α^{2t} ;
- Example of 2 error correcting BCH code:

- t error correcting codes;
- generator polynomial $g(x) = LCM\{\Phi_1(x), \Phi_2(x), \ldots\};$
- g(x) has roots α , α^1 , ..., α^{2t} ;
- Example of 2 error correcting BCH code:

(15, 7) BCH code

$$g(x) = \Phi_1(x)\Phi_3(x) = 1 + x^4 + x^6 + x^7 + x^8$$

- block length: n = q 1;
- parity-check length: n k = 2t;
- $d_{\min} = 2t + 1$;

•
$$g(x) = (x + \alpha^{m+1})(x + \alpha^{m+2}) \dots (x + \alpha^{m+\delta-1})$$

- block length: n = q 1;
- parity-check length: n k = 2t;
- $d_{\min} = 2t + 1$;

•
$$g(x) = (x + \alpha^{m+1})(x + \alpha^{m+2}) \dots (x + \alpha^{m+\delta-1})$$

- block length: n = q 1;
- parity-check length: n k = 2t;
- $d_{\min} = 2t + 1$;

•
$$g(x) = (x + \alpha^{m+1})(x + \alpha^{m+2}) \dots (x + \alpha^{m+\delta-1})$$

- block length: n = q 1;
- parity-check length: n k = 2t;
- $d_{\min} = 2t + 1$;
- $g(x) = (x + \alpha^{m+1})(x + \alpha^{m+2}) \dots (x + \alpha^{m+\delta-1})$

Berlekamp-Massey Decoding

Table: Calculation results of step 3

i	$q_i - p_i$							di	Zį		
-1	α^{0}	α^7	α^{0}	α^9	α^{12}	α^9	α^7	_	α^0	-1	
0	α^7	α^{0}		α^{12}	α^9	α^7	_	α^{0}		0	-1
1	α^3	α^{0}		α^{14}	α^{14}	_	α^{0}	α^7		0	0
2	α^{12}	α^7		α^{12}		α^{0}	α^{8}			1	1
3	α^{0}	α^{10}	α^9	_	α^{0}	α^{12}	α^1			1	2
4	0	0	_	α^0	α^{10}	α^6				2	3
5	0	_		α^{10}	α^{6}					3	3
6	_	α^{0}	α^{10}	α^6						4	3

LDPC ●00000

Why LDPC?

$$x_1 + x_2 + x_3 = 1$$
$$x_1 + x_2 = 1$$
$$x_1 = 1$$

$$x_2 + x_3 = 0$$
$$x_2 = 0$$

Figure:

 x_1

 c_1

Figure:

Normal Parity-Check Code:

000000

Low-Density Parity-Check Code:

Figure:

LDPC

000000

0

$$\frac{w_r}{w_c} = \frac{n}{n-k},$$

$$J = \frac{2^{(m-1)s}(2^{ms}-1)}{2^s-1}$$

•
$$d_{\min} \geq \gamma + 1$$

0

$$\frac{w_r}{w_c} = \frac{n}{n-k},$$

$$J = \frac{2^{(m-1)s}(2^{ms}-1)}{2^s-1}$$

•
$$d_{\min} \geq \gamma + 1$$

0

$$\frac{w_r}{w_c} = \frac{n}{n-k},$$

$$J = \frac{2^{(m-1)s}(2^{ms}-1)}{2^s-1}$$

$$\bullet \ \gamma = \frac{2^{ms}-1}{2^s-1};$$

•
$$d_{\min} \geq \gamma + 1$$

0

$$\frac{w_r}{w_c} = \frac{n}{n-k},$$

$$J = \frac{2^{(m-1)s}(2^{ms}-1)}{2^s-1}$$

$$\bullet \ \gamma = \frac{2^{ms}-1}{2^s-1};$$

•
$$d_{\mathsf{min}} \geq \gamma + 1$$

Tanner Graph

Figure: Tanner graph of the check node of a LDPC code

Tanner Graph

Figure: Tanner graph of the symbol node of a LDPC code

Crux of Belief Propagation

Basics

- Listen to Credited Nodes
- Listen to Majority
- Pass Reliable Information
- Convert Unreliable Node

LDPC

Create Incident Vector

- Know Incident Vector, know parity-check matrix.
- Euclidean Geometry: Multiple dimensions represent one dimension
- How to find an incident vector

$$\mathbf{H} = egin{bmatrix} \mathbf{I}_0^0 \ \mathbf{I}_0^1 \ dots \ \mathbf{I}_0^{n-1} \end{bmatrix}.$$

Create Incident Vector

- Know Incident Vector, know parity-check matrix.
- Euclidean Geometry: Multiple dimensions represent one dimension
- How to find an incident vector

Example $(GF(2^4))$:

$$0
ightarrow (0,0,0,0) \ 1
ightarrow (0,0,0,1) \ 2
ightarrow (0,0,1,0) \ \cdots
ightarrow \cdots \ 15
ightarrow (1,1,1,1)$$

Create Incident Vector

- Know Incident Vector, know parity-check matrix.
- Euclidean Geometry: Multiple dimensions represent one dimension
- How to find an incident vector

Example: $GF(2^4)$ $GF(2^2)$: $\{0,1,\beta,\beta^2\}$ subset of $GF(2^4)$: $\{0,1,\alpha,\dots,\alpha^{14}\}$. $\beta=\alpha^5$. For α^{14} , $\{\alpha^{14}+0\alpha,\alpha^{14}+1\alpha,\alpha^{14}+\beta\alpha,\alpha^{14}+\beta^2\alpha\}$ corresponds to the incident vector 000000011010001 $(\{\alpha^7,\alpha^8,\alpha^{10},\alpha^{14}\})$.

Create Very-Long LDPC

- Why long code? (Shannon Limit)
- Advantages of using short LDPC create long LDPC.
- Higher rate.
- Lower density.
- Guaranteed error correcting capability.
- etc.

Create Very-Long LDPC

- Why long code? (Shannon Limit)
- Advantages of using short LDPC create long LDPC.
- Higher rate.
- Lower density.
- Guaranteed error correcting capability.
- etc.

