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1 Introduction

1.1 Introduction

Nowadays, digital communication is an integral part of our lives. Error correcting codes

play an important role in the design of a successful digital communication system. Since

Shannon [1] proved the channel coding theorem in 1948, often called the Shannon limit,

it has prompted more studies on the design of stronger error correcting codes with more

complexity. More and more close-to-bound error correcting codes, e.g. turbo codes and

low-density parity-check codes, were discovered or rediscovered in the past two decades.

In this course, we will present a number of important error control coding (ECC) tech-

niques which are widely used in telecommunications system. We attempt to maintain the

balance between the mathematics and their practical implications on telecommunications.

In Section 1.2, we will first illustrate the problems that will be investigated in this

work, and the goals that this work aims for. Then, in Section 1.3, we will illustrate

the framework of a communication system. The Shannon limit will be introduced in

Section 1.4. In Section 1.5, we will present the layout of this article.

1.2 Problem Statement

In most communication systems, errors are introduced through the data exchange, pro-

cessing and storage (channel). How to reproduce highly reliable data from a unreliable

channel becomes a major concern for the system designer. The main problem investi-
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1. Introduction

gated in this article is how to find good error correcting codes to protect the system from

substitution errors. More specifically, how can we effectively retrieve original sequences

sent when there are random substitution errors, and how can we increase the transmission

rate with the least trade-off of the system complexity at the same time?

To answer these questions, we will first introduce channel capacity and the landmark

Shannon limit [1].1 In this course, we will present two basic coding techniques, block

codes and convolutional codes. We will also present the basics of some state-of-the-art

coding techniques, i.e., low-density parity-check and soft decision. As known, based on

the techniques presented in this course, channel coding can already offer performance

close to theoretical bounds.

1.3 Framework of Communications System

In Fig. 1.1, we present the system model of a communication system, which is the classic

mathematical model of communication introduced by Shannon and Weaver in [2].

Source Error Correcting Encoder Modulator

Sink Error Correcting Decoder De-modulator

Channel

Figure 1.1: System model of a communication system.

Regarding the system model, we have some important issues to clarify:

First, unless stated otherwise, we only consider a forward error correction (FEC)

system. In practice, a communication system can be FEC and/or automatic-repeat-

request (ARQ).

1Channel capacity is defined as the maximal code rate under a certain channel state, which can
guarantee a reliable data transmission.
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1. Introduction

Second, we want to clarify that a practical communication system includes more steps

and involves more coding techniques, e.g., source coding and modulation coding. The

introduction to these techniques is not included in this article, and can be obtained from

relevant textbooks.

In this classic model, the information transmitted from the source to its destination

is an abstract conception. In the real world, it can be images, computer data, voice, and

so forth.

To achieve minimized probability of erroneous transmission, an error protection scheme

might be used. This protection can be achieved through either of the following strate-

gies: forward error correction (FEC) or automatic repeat request (ARQ). FEC can be

implemented by using error correction coding.

1.4 The Shannon Limit and Channel Coding

In 1948, Shannon [1] proved that for a band-limited additive white Gaussian noise channel

with bandwidth B, there exists families of coding schemes that can achieve an arbitrarily

small probability of error at the receiving end at a communication rate less than the

capacity of the channel, which can be described as follows:

C = B log2(1 +
S

N
)bits/sec, (1.1)

where C represents the capacity of the channel, S and N are the average signal power

and noise power. The implication of (1.1) is that, if the information rate can be dropped

below the capacity of the transmission channel, with proper error protection means, such

as error correcting codes, error free transmission is possible.

The data transmission or storage can be protected from the errors induced by a noise

channel or storage medium, provided that the information transmit rate R is less than

the capacity C,

R < C. (1.2)

Example 1.1 Since

N = N0B, (1.3)
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1. Introduction

if the two-sided power spectrum density of the noise is N0/2 watts/Hz, we can obtain

C =B log2(1 +
S

N0B
) (1.4)

=B log2(1 +
CEb
N0B

), (1.5)

where Eb denotes the energy per bit.

The definition of the spectral efficiency η is as follows:

η =
C

B
. (1.6)

Therefore, from (1.5) and (1.6)

η = log2(1 + η
Eb
N0

). (1.7)

For BPSK modulation, the spectral efficiency is η = 1. The corresponding Eb/N0 is 1

(0 dB). It means on the basis of a coding scheme, a BPSK-modulation system can achieve

error-free transmission over an AWGN channel at signal-noise-ratio per bit 0 dB.

We assume a unlimited bandwidth, in other words, B →∞ and η = 0. From (1.7),

Eb
N0

=
2η − 1

η
. (1.8)

Therefore, we have

lim
η→0

Eb/N0 = ln 2, (1.9)

which is -1.6 dB.

Example 1.2 Not considering its bandwidth efficiency, binary phase shift keying (BPSK)

is known to be the optimum binary modulation scheme, because it is one kind of antipodal

sampling. Consequently, it is often used in communications theory as a benchmark for

comparison. For uncoded BPSK, we have

BER = Q(
√

2Eb/N0), (1.10)
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1. Introduction

where

Q(x) =
1√
2π

∫ ∞
x

e−y
2/2dy, (1.11)

and BER denotes the bit error rate of the received sequence. The result is illustrated by

Fig. 1.2.

 

Figure 1.2: Shannon Limit and Performance of an Uncoded BPSK system

These breakthroughs of information theory prompted academics to look for explicit

error control codes. A lot of research was expended on designing efficient and reliable

encoders and decoders. This research introduced error control coding as an important

aspect of the design of the digital communication or storage system. In 1949, Golay and

in 1950 Hamming introduced different kinds of practical error control codes, which all

belong to block codes. A decade later, a class of longer block codes, known as BCH codes,

was found by Bose, Ray-Chaudhuri and Hocquenghem. Convolutional codes were first

introduced by Peter Elias in 1955. In 1960, Reed and Solomon designed the Reed-Solomon

codes, which can provide distinguished error correction performance and are introduced

specifically to protect against burst errors existing in transmission. The performance of

a most popular concatenated coding system using a Viterbi-decoded convolutional inner
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1. Introduction

code and a Reed-Solomon outer code, with interleaving between these two coding steps,

is only 4dB from the Shannon limit. After fifty years of research, in 1993 Berrou and

Glavieux presented a coding scheme named turbo codes, which can provide a coding gain

near to the Shannon limit. In 1962, Gallager introduced a class of linear block codes,

named low-density parity-check (LDPC) codes [3]. In 1981, Tanner generalized LDPC

codes and introduced Tanner graphs to represent LDPC in [4], based on which the belief

propagation (BP) algorithm is found to be a good candidate decoding algorithm. In

1995, MacKay re-invented LDPC codes [5] and pointed out that LDPC codes can provide

close-to Shannon limit performances.

1.5 Outline

A brief introduction and problem statement, as well as the outline of the rest of this

article are provided in the current chapter.

Block codes, which is one of two major categories of error correcting codes will be

introduced in Chapter 2. We will present Hamming codes, Reed-Solomon codes and

low-density parity-check codes. In the same chapter decoding part, we will introduce

syndrome decoding algorithm, Berlekamp-Massey decoding algorithm, Tanner graph and

belief-propagation decoding algorithm.

The other major category of error correcting codes, convolutional codes will be intro-

duced in Chapter 3. Following the code structures and properties, we will present the

Viterbi decoding algorithm.

In Chapter 4, we will introduce interleaving and concatenated system.
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2 Block Codes

Two years after Shannon published his landmark paper, Hamming in 1950 found the

first class of linear block codes for error correction. In this chapter, we will first present

the basics of linear block codes in Section 2.1. Then we will introduce several classes

of important linear block codes and a few decoding algorithms. In Section 2.2, we first

introduce Hamming codes. Then, a very brief introduction to the linear algebra is pre-

sented in Section 2.3. In Section 2.4, we will continue to present Reed-Solomon codes;

and in Section 2.5, the Berlekamp-Massey decoding algorithm is introduced. Low-density

parity-check codes will be presented in Section 2.6; Tanner graph and belief-propagation

decoding algorithm will be introduced in Section 2.7. In Section 2.8 we will present how to

construct a very long LDPC code, which can provide close-to-Shannon-limit performance.

2.1 Basics of Linear Block Codes

A linear (n, k) block code always can be presented as

v = uG. (2.1)

For binary codes, u can be any bit sequences of length k, and v is the unique corresponding

codeword of length n. Here G has k linear independent rows and n columns, and is called

the generator matrix. If

G :=
(
P Ik

)
(2.2)

the linear block code is systematic. Here I is a k × k identity matrix. By a systematic

encoding, the information u is part of the codeword v.
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2. Block Codes

So what is the parity-check matrix? Given a generator matrix G, there exists an

(n− k)× n matrix H iff. vHT = 0.

If G has the form as described by (2.2), H takes the following form:

H :=
(
In−k PT

)
(2.3)

Definition 2.1 Hamming distance of two equal length sequences is the number of posi-

tions at which the corresponding symbols are different.

Definition 2.2 Minimum Hamming distance dmin of a code is the minimum value of the

Hamming distances of any two codewords.

2.2 Hamming Code

For any positive integer m ≥ 3, there exists a Hamming code with

1) codeword length: n = 2m − 1

2) length of information: k = 2m −m− 1

3) length of parity bits: n− k = m

4) dmin = 3

How to get the generator matrix of Hamming codes?

1) choose m;

2) enumerate all binary sequences of length m from 0 . . . 01 to 1 . . . 1;

3) create the parity-check matrix by filling these binary sequences in the matrix column

by column in the form as described by (2.3);

4) obtain the generator matrix.

2-2



2. Block Codes

Example 2.1 For m = 3, we first enumerate non-all-zero bits of length 3 such as

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1


(2.4)

Then we can put the sequences column-wisely to create a parity-check matrix:

H =

1 0 0 | 1 0 1 1

0 1 0 | 1 1 1 0

0 0 1 | 0 1 1 1

 (2.5)

Therefore, we can generate the generator matrix:

G =


1 1 0 | 1 0 0 0

0 1 1 | 0 1 0 0

1 1 1 | 0 0 1 0

1 0 1 | 0 0 0 1

 (2.6)

Hamming code is a single-error-correcting code, since dmin = 3. We assume one bit in

the codeword u is changed through the transmission. Let v′ denote the received sequence,

and let e denote the single error. Note that e is a bit sequence of length n with a single

one at the position that the error occurs. It is evident that

uG =v (2.7)

v + e =v′. (2.8)

If we compare the Hamming distance of the received sequence u′ with all codewords, we

will find one codeword with u′ has a Hamming distance 1; while all other codewords with

u′ have the Hamming distance no less than two. We can find and correct the codeword

by using this method. However, it is not the easiest way to find the answer, because
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2. Block Codes

the received sequence has to be compared to every codeword. Based on the following

derivation, we will find an approach to reduce the decoding complexity:

(uG + e)HT =vHT + eHT (2.9)

=0 + eHT (2.10)

=eHT (2.11)

Since e = (0, . . . , 0, 1, 0, . . . , 0) and HT can be presented as

HT =


h1

h2
...

h2m−1

 , (2.12)

eHT = hi, (2.13)

where 1 ≤ i ≤ 2m − 1.

Actually, if we multiply the received sequence with the transport parity-check matrix,

the result, called syndrome, will lead to the error location.

Example 2.2 We use the same generator matrix as Example 2.1. Given information

u = 0001, we sent the codeword

v =uG (2.14)

=
(

0 0 0 1
)


1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1

 (2.15)

=
(

1 0 1 0 0 0 1
)

(2.16)

over the channel.

As the result of one error, we receive

v′ =
(

1 0 1 0 1 0 1
)
. (2.17)
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2. Block Codes

After the following calculation:

v′HT =
(

1 0 1 0 1 0 1
)


1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1

1 0 1


(2.18)

=
(

0 1 1
)
, (2.19)

we find the syndrome sequence is same as the fifth row of HT . This leads to two discoveries:

1) Detection: there is error in the received sequence

2) Correction: if there is only one error, it must appear at the fifth position.

Therefore, we change the received sequence into(
1 0 1 0 0 0 1

)
(2.20)

which is the correct codeword we send.

2.3 Irreducible, Primitive and Minimal Polynomials

and Construction of the Galois Field

Definition 2.3 If polynomial f can be described as f(x) = g(x)d(x), and d(x) is neither

1 nor f(x), f is reducible over K; otherwise it is irreducible.

Definition 2.4 An irreducible polynomial of degree r is primitive, if it is not a divisor

of 1 + xm, where m < 2r − 1.

Thus, according to Definition 2.4, using a primitive polynomial to construct mathe-

matic computing in the GF (2r) field is convenient. And every non-zero world in GF (2r)

can be represented as a power of a primitive element α.
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2. Block Codes

Definition 2.5 For any element α in GF (2r), the minimal polynomial is the polynomial

with the smallest degree having α as a root.

Example 2.3 Construction of a GF (24) field based on the primitive polynomial h(x) =

1 + x+ x4:

Table 2.1: Construction of a GF (24) field by h(x) = 1 + x+ x4

Codeword Polynomial in x (mod h(x)) Power of α

0000 0 –
1000 1 1
0100 x α
0010 x2 α2

0001 x3 α3

1100 1 + x α4

0110 x+ x2 α5

0011 x2 + x3 α6

1101 1 + x+ x3 α7

1010 1 + x2 α8

0101 x+ x3 α9

1110 1 + x+ x2 α10

0111 x+ x2 + x3 α11

1111 1 + x+ x2 + x3 α12

1011 1 + x2 + x3 α13

1001 1 + x3 α14

In this example, the minimal polynomial of each element is shown as follows:

Table 2.2: Minimal polynomials of the elements in GF (24)

Elements of GF (24) using h(x) Minimal polynomial

0 x
1 x+ 1

α, α2, α4, α8 x4 + x+ 1
α3, α6, α9, α12 x4 + x3 + x2 + x+ 1

α5, α10 x2 + x+ 1
α7, α11, α13, α14 x4 + x3 + 1

2-6



2. Block Codes

2.4 Reed-Solomon Code

As one type of linear code, Reed-Solomon codes are a subset of non-binary BCH codes.

Reed-Solomon codes work on the GF (q) field, where q represents any power of one prime

number p.

For any positive integer of s and t, there exists a q-ary BCH code of length n = qs−1,

which is capable of correcting not more than t errors. The special subclass of q-ary t-

error-correcting BCH codes for which s = 1 is called the Reed-Solomon codes, and the

properties of Reed-Solomon codes are as follows:

1) block length: n = q − 1;

2) parity-check length: n− k = 2t;

3) dmin = 2t+ 1.

Consider Reed-Solomon codes with the alphabet from the Galois field GF (2r). The

generator polynomial of a primitive t-error-correcting Reed-Solomon code of length n =

2r − 1 is

g(x) = (x+ α)(x+ α2)(x+ α3) . . . (x+ α2t) (2.21)

Thus, we can obtain

g(x) = g0 + g1x+ g2x
2 + . . .+ g2t−1x

2t−1 + x2t. (2.22)

Therefore, the generator polynomial has the roots of α, α2,. . ., α2t.

Let g(x) have degree n − k. If g(x) generates a linear cyclic code C over GF(2r) of
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2. Block Codes

length n = 2r − 1, and dimension k then

G =



g(x)

xg(x)

x2g(x)
...

xk−1g(x)


(2.23)

is a generator matrix for C, and the number of codewords in C is (2r)k.

Thus, the codeword corresponding to any k-length symbol sequence m(x) is mG.

2.5 Decoding of Reed-Solomon Codes and

Berlekamp-Massey Algorithm

Since Reed-Solomon codes are over the GF (q) field, the decoding process not only needs

to look for the locations of errors, but also the magnitudes of errors. The error magnitude

of an error location i is the element of GF (q) that occurs in coordinate i of the (most

likely) error pattern. For any binary code, since the 1 is the only non-zero element of

GF (2), the location of error can completely satisfy the determination of an error.

Thus, the first steps for decoding a Reed-Solomon code are the same as that of a

binary BCH code. In addition, an extra step is required to determine the magnitude of

error.

The Berlekamp-Massey algorithm has a fast performance on finding the error locator

polynomial and is shown as follows:

Let w be a received word that was encoded using the RS(2r, δ) code with generator

g(x) = (x+ αm+1)(x+ αm+2) . . . (x+ αm+δ−1). (2.24)

Let t =
⌊
δ−1
2

⌋
.

1) Calculate sj = w(βj) for m+ 1 ≤ j ≤ m+ 2t .

2-8



2. Block Codes

2) Define

q−1(x) =1 + sm+1x+ sm+2x
2 + . . .+ sm+2tx

2t, (2.25)

q0(x) =sm+1 + sm+2x+ . . .+ sm+2tx
2t−1, (2.26)

p−1(x) =x2t+1, (2.27)

p0(x) =x2t. (2.28)

Let d−1 = −1, d0 = 0 and z0 = −1.

3) For 1 ≤ j ≤ 2t, define qi, pi, di and zi as follows. If qi−1,0 = 0 then let

qi(x) =qi−1(x)/x (2.29)

pi(x) =pi−1(x)/x (2.30)

di =di−1 + 1 (2.31)

zi =zi−1 (2.32)

If qi−1,0 6= 0 then let

qi(x) =
(
qi−1(x) + (qi−1,0/qzi−1,0)qzi−1

(x)
)
/x (2.33)

which can be truncated to have degree at most 2t− i− 1, and let

pi(x) =
(
pi−1(x) + (qi−1,0/qzi−1,0)pzi−1

(x)
)
/x, (2.34)

di =1 + min{di−1, dzi−1}, (2.35)

zi =

i− 1 if di−1 ≥ dzi−1

zi − 1 otherwise
(2.36)

If e ≤ t errors have occurred during transmission then p2t(x) has degree e; the error

locator polynomial is

σ(x) = p2t,e + p2t,e−1x+ . . .+ p2t,1x
e−1 + xe (2.37)

and has e distinct roots (notice that σ(x) is the ”reverse” of p2t(x)).

Example 2.4 For a 3-error-correcting Reed-Solomon code, the generator polynomial is

g(x) = (x+ 1)(x+ α)(x+ α2) . . . (x+ α5) (2.38)
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using Table 2.3 we can obtain:

g(x) = 1 + α4x+ α2x2 + αx3 + α12x4 + α9x5 + x6. (2.39)

Since t = 3, we get:

n− k = 2t = 6, where n = 24 − 1 = 15 and k = n− 2t = 9.

According to the generator polynomial, we can get m = −1.

Suppose the received word is 1α40α0α9100000000, we can get the polynomial:

w(x) = 1 + α4x+ αx3 + α9x5 + x6. (2.40)

1) We get the syndrome polynomials as:

s0 =w(α0) = 1 + α4 + α + α9 + 1 =α7, (2.41)

s1 =w(α1) = 1 + α5 + α4 + α14 + α6 =1, (2.42)

s2 =w(α2) = 1 + α6 + α7 + α19 + α12 =α9, (2.43)

s3 =w(α3) = 1 + α7 + α10 + α24 + α18 =α12, (2.44)

s4 =w(α4) = 1 + α8 + α13 + α29 + α24 =α9, (2.45)

s5 =w(α5) = 1 + α9 + α16 + α34 + α30 =α7 (2.46)

2)

q−1(x) =1 + α7x+ x2 + α9x3 + α12x4 + α9x5 + α7x6, (2.47)

q0(x) =α7 + x+ α9x2 + α12x3 + α9x4 + α7x5, (2.48)

p−1(x) =x7, (2.49)

p0(x) =x6, (2.50)

d−1 =− 1, d0 = 0, z0 = −1. (2.51)

3) Preceding the step 3, we can get the following table:

Finally, we obtain:

σ(x) = α6 + α10x+ x2. (2.52)
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Table 2.3: Calculation results of step 3 in Example 2.4

i qi − pi di zi
-1 α0 α7 α0 α9 α12 α9 α7 – α0 -1

0 α7 α0 α9 α12 α9 α7 – α0 0 -1

1 α3 α0 α13 α14 α14 – α0 α7 0 0

2 α12 α7 α6 α12 – α0 α8 1 1

3 α0 α10 α9 – α0 α12 α1 1 2

4 0 0 – α0 α10 α6 2 3

5 0 – α0 α10 α6 3 3

6 – α0 α10 α6 4 3

4) According to σ(x) = α6 + α10x + x2 = (α2 + x)(α4 + x), we get the error location

numbers as α2 and α4.

5) Solve the following function (
1 1

α2 α4

)(
b1

b2

)
=

(
α7

1

)
(2.53)

and we get b1 = α2 and b2 = α12 .

The most likely error pattern is:

e = 00α20α120000000000. (2.54)

Then

c = w + e = 1α4α2αα12α9100000000. (2.55)

2.6 Low-Density Parity-Check Codes

In 1962, Gallager introduced a class of linear block codes, named low-density parity-check

(LDPC) codes [3]. In 1981, Tanner generalized LDPC codes and introduced Tanner graphs

to represent LDPC in [4], based on which the belief propagation (BP) algorithm is found

to be a good candidate decoding algorithm. In 1995, MacKay re-invented LDPC codes

[5] and pointed out that LDPC codes can provide close-to Shannon limit performances.

Let Fk2 denote a vector space including all binary k-tuples. This k-length vector space
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2. Block Codes

can be spanned into a n-length code C by

c = uG, (2.56)

where c ∈ C and u ∈ Fk2 . Here G is a k × n generator matrix.

If there exists a matrix such as

GHT = 0, (2.57)

H is called the parity-check matrix.

If G is a k×n matrix, H is an (n− k)×n matrix. A low-density parity-check code is

a linear code with the parity-check matrix H having a low density of ones. For a regular

LDPC code, we have wc ones in each column and wr ‘1’ in each row. We have

wr
wc

=
n

n− k , (2.58)

and wr � n. For an irregular LDPC code, the number of ones in each column and in

each row is not constant.

There are a number of constructions of LDPC codes. The most important LDPC

codes include Gallager codes, MacKay codes, irregular LDPC codes, finite geometry codes,

repeat-accumulate codes and array codes. A brief introduction to each of these codes can

be found in [6]. We will only choose a class of finite geometry codes, in the next section,

to present the construction.

One type of LDPC codes used in our simulations is type-I Euclidean geometry (EG)

codes. A brief introduction to this type of LDPC codes will be presented in this section.

More details can be found in [7].

We consider an m-dimensional Euclidean geometry over GF(2s). There are 2ms points

in this geometry, and each point can be represented by a m-tuple over GF (2s). Therefore,

the number of lines in this geometry is

J =
2(m−1)s(2ms − 1)

2s − 1
, (2.59)

where each line has 2s points.
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Each point in this geometry is intersected by

γ =
2ms − 1

2s − 1
(2.60)

lines.

Two lines in this geometry are either parallel to or intersected at one point.

The minimum Hamming distance of a type-I (0, s)-th order EG-LDPC code is lower

bounded by

dmin ≥ γ + 1. (2.61)

Therefore, m = 2-dimentional type-I (0, s)-th order cyclic EG-LDPC also has the prop-

erties as follows

n = 22s − 1, (2.62)

n− k = 3s − 1, (2.63)

dmin = 2s + 1, (2.64)

and

wc = wr = 2s. (2.65)

Finding the incident vector of a line is the key to construct a parity-check matrix, since

the parity-check matrix is composed of an incident vector and all its cyclic-shifts. Let Ii0

denote the incident vector of length n and all its possible cyclic-shifts, where 0 ≤ i ≤ n−1

and the superscript denotes the index (number) of the cyclic-shift. It is evident that I00 is

the incident vector. The parity-check matrix is

H =


I00

I10
...

In−10

 . (2.66)

In [7], the foundations for the study of EG-LDPC codes are provided. Here we only

present an algorithm to derive the incident vector.
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Let GF(pm) denote a Galois field generated by the primitive polynomial g(x) under

the multiplication operation · and the addition operation +. Here p denotes a prime,

and m denotes a positive integer. Let α denote a primitive element which is the root of

g(x) = 0. In the following algorithm, we use the power representation for the elements of

GF(pm). Let {ai}, where −1 ≤ i ≤ qm − 2 denote these pm elements such as

ai =

0, for i = −1,

αi, for 0 ≤ i ≤ qm − 2.

Algorithm 2.1 Set the incident vector I0 = I0 . . . Iqm−2 = 00 . . . 0. Set i = −1.

Iteration:

1) If i > qm − 2 exit.

2) x = ai.

3) Set Iy = 1 such as αy = apm−2 + a1 · x.

4) i = i+ 1.

5) Go to Step 1.

The systematic construction and guaranteed error correcting capability are two advan-

tages of using geometry LDPC codes. As compared to randomly generated LDPC codes,

geometry LDPC codes are not limited by the error floor and have a related simplified en-

coding structure. However, as we show earlier, this type of LDPC codes is not flexible in

term of rate and length. Additionally, the parity-check matrix of geometry LDPC codes

has the size of n× n, which is larger than conventional (n− k)× n. Here n is the length

of the codeword and k is the length of the information.

2.7 The Tanner Graph and the Belief Propagation

Decoding Algorithm

It is worthy introducing the Tanner graph before presenting the BP algorithm. A graph

is composed of a vertex set V and all directed edges. If there exist V1 and V2 such that
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V1 ∪ V2 = V and all edges having one vertex from V1 and the other from V2, this graph is

called a Tanner graph.

For an (n, k) linear block code C with parity-check matrix

H =


h0,0 h0,1 . . . h0,n−1

h1,0 h1,1 . . . h1,n−1
...

... hi,j
...

hn−k,0 hn−k,1 . . . hn−k,n−1

 ,
it can be presented as a Tanner graph, in which, there are n−k check nodes and n symbol

nodes. If hi,j = 1, there exists an edge connecting the symbol node j and the check node

i.

For a regular LDPC code, each check node has the valency wr, and each symbol node

has the valency wc.

The a posteriori probability (APP) of the symbol ci, if we receive y = y0y1 . . . yn−1, is

defined as

Pr(ci = 1|y)) (2.67)

The likelihood ratio (LR) l(ci) of the symbol ci, is as

l(ci) :=
Pr(ci = 0|y)

Pr(ci = 1|y)
. (2.68)

The log-likelihood ratio (LLR) is defined as

log
Pr(ci = 0|y)

Pr(ci = 1|y)
. (2.69)

Note that, in the BP algorithm for decoding LDPC codes, APP is not the only message

that can be passed in the graph. Instead of APP, LR or LLR also can be considered as

the passing message.

Now we present the belief propagation algorithm. Let qi,j and ri,j denote the messages

passing between check nodes and symbols nodes. As shown in Fig. 2.1 and in Fig. 2.2, the

symbol node is presented as a round node, and the check node is presented as a square

node. The message qi,j is passed from the symbol node i to the check node j, and the
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message ri,j is passed from the check node j to the symbol node i. Let Si denote the

event that the checks involving ci symbol all are satisfied. Let Tj denote the event that

the check at the node j is satisfied.

Now we can define qi,j as follows:

qi,j(0) := Pr(ci = 0|yi, Si, {ri,\j}) (2.70)

and

qi,j(1) := Pr(ci = 1|yi, Si, {ri,\j}), (2.71)

where {ri,\j} denotes all messages from the check node except the check node j.

The message ri,j from the check node can be defined as

ri,j(0) := Pr(Ti|ci = 0, {q\i,j} (2.72)

and

ri,j(1) := Pr(Ti|ci = 1, {q\i,j} (2.73)

· · · · · ·

yi

ci

qi,j

fj

ri,j

Figure 2.1: Tanner graph of the check node of a LDPC code
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· · · · · ·

ci

ri,j

fj

qi,j

Figure 2.2: Tanner graph of the symbol node of a LDPC code

We can further derive and obtain:

qi,j(0) = Pr(ci = 0|yi, Si, {ri,\j})

=
Pr(Si|yi, ci = 0, {ri,\j}) Pr(ci = 0, yi, {ri,\j})

Pr(yi, Si, {ri,\j})

=
Pr(Si|yi, ci = 0, {ri,\j}) Pr(ci = 0|yi, {ri,\j}) Pr(yi, {ri,\j})

Pr(Si|yi, {ri,\j}) Pr(yi, {ri,\j})

=
Pr(Si|yi, ci = 0, {ri,\j}) Pr(ci = 0|yi, {ri,\j})

Pr(Si|yi, {ri,\j})

(2.74)

Let Pi denote Pr(ci = 1|yi). We have Pr(ci = 0|yi) = 1 − Pi. Since ci is independent to

{ri,\j}, and Si is independent to yi and {ri,\j}. Therefore, we have

qi,j(0) =
(1− Pi) Pr(Si|ci = 0, yi, {ri,\j})

Pr(Si)
. (2.75)

We further can obtain

qi,j(1) =
Pi Pr(Si|ci = 1, yi, {ri,\j})

Pr(Si)
. (2.76)

By observation, we can find that Pr(Si|yi, ci = 0, {ri,\j}) is determined {ri,\j}. We

have

qi,j(0) = Ki,j(1− Pi)
∏

ri,\j(0), (2.77)
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and

qi,j(1) = Ki,jPi
∏

ri,\j(1), (2.78)

where Ki,j is used to normalize qi,j, since

qi,j(0) + qi,j(1) = 1. (2.79)

We also can have

ri,\j(0) =

∏
(1− 2q\i,j(1))

2
. (2.80)

For a certain channel, Pr(ci = 0|yi) = 1−Pi is given. Therefore, by (2.77), (2.78) and

(2.80), we can create an iterative belief propagation algorithm. The stopping condition

for this algorithm is

ĉHT = 0, (2.81)

or the iteration times is more than the maximum times. Here ĉ is obtained by

ĉi =

1, if KiPi
∏
ri,j(1) > Ki(1− Pi)

∏
ri,j(0),

0, else,
(2.82)

where Ki is the normalizing factor to hold

KiPi
∏

ri,j(1) +Ki(1− Pi)
∏

ri,j(0) = 1. (2.83)

2.8 How to Create Very-Long Length LDPC Codes

In this section, we will show some details of the m = 2-dimensional type-I (0, s)-th

order cyclic EG-LDPC. Given s, the specifications of this types of codes are shown as in

Table 2.4

Furthermore, a (65520, 61425)-LDPC code can be derived from an s = 6 (4095, 3367)-

LDPC code following the procedure:

1) Split each column (a matrix) into 16 columns such as n = 16× 4095.
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Table 2.4: EG(2, 0, s) LDPC code specifications

s n k

2 15 7

3 63 37

4 255 175

5 1023 781

6 4095 3367

7 16383 14197

2) Rotate each column of the parity matrix of the (4095, 3367)-LDPC code into 16

new columns.

The rotation rule is specified as follows. Let I(i) denote the index of the i-th ones in

the column. Therefore, we have 1 ≤ I(1) < I(2) < · · · < I(γ − 1) < I(γ) ≤ n. Let q

denote the splitting depth. We have

γ = qγext + r, (2.84)

where 1 ≤ r ≤ γext − 1. Here γext denotes the column weight of the parity-check matrix

of the extended code. Let I(i, j) denote the index of the j-th ones in the i-th rotated

column. We have

I(i, j) = I(i+ (j − 1)q), (2.85)

where 1 ≤ i ≤ q. The first r rotated columns have weight γext + 1, in other words,

1 ≤ j ≤ γext + 1, and the others have weight γext.

The above procedure, named as column splitting, can be used to create long LDPC

codes from relatively short LDPC codes.

Example 2.5 The original column is 010001011000000. We split it into 2 columns. If

the first column contains the first one, then the second column contain the second one, and

so on. Therefore, the original column is split into two columns such as 010000010000000

and 000001001000000.

The incident vectors of the A matrices of the m = 2-dimentional type-I (0, s)-th order
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cyclic EG-LDPC for s from two to seven are shown in Table 2.5. The notation is in left-

aligned hexadecimal notation. Note that let A denote non-systematic generator matrix

to be different from the systematic generator matrix notation G.

Table 2.5: Incident vectors of the A matrices of the EG(2, 0, s) LDPC code

s A Matrix

2 0854

3 00805010000010c4

4 410020400040200800000080000000000000c004040000000000004011000004

5 0040000000008000000000620020000000800120000000000000000100000000

0100000020000000020000200000000000000000000000000000800000000010

0000000000000000400800000200000000000000000008000000040000001000

8280000180000000000000000800002080000000000000001000000000000004

6 0000000008000000040000040000000000000080000000000000040400000000

0040000000020000400000000000000000004000000000000000100000000000

1000000000000000020000000000004000000000000000000000000000021008

1000000000000000000000100000000000000004000000000010000000000000

0000000000000000080000000010000000000000000000000000000001200000

0000000000000000010000000002000000000000000000000004000000000000

0000000000000010000000000000000080000000000000000000000000000000

0000000401000000410800020000200000000000008000000000000000000100

0000000000000000000000000000000010000000000000000000010200000000

0000000000000000000000000000000020000000000000000000400000000000

0000010000000000000000000000000000000008000000000000000000000000

0201040000008000000000000000000000000000000000000001000000000000

0000000400000000000000000000000000000000000200000000000010000800

0000000000000000000000000000000000000000000001000000002000000000

0000000000000000004000000000000000000000000000000000000000000000

0000000000000000000000000000000010010000000000000011000040000004
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3
Convolutional Codes and

Viterbi Decoding

3.1 Introduction

Convolutional codes are often known as nonblock linear codes, although they also have a

block codeword structure over infinite fields. For a binary convolutional code, the memory

and linear encoder operations are defined on GF(2). With a logic circuit implementation,

the encoders consist of binary shift registers, exclusive OR and binary multiplication

operations. An encoder maps an input vector of k bits to the output vector of n bits,

where n > k. A convolutional code with the number of memory elements m can be

denoted as an (n, k, m) code.

S
erializer

u

v(1)

v(2)

v

Figure 3.1: Implementation of a (2,1) convolutional encoder

An (n, k) binary convolutional code is designed to accept k-tuple binary information at

the input and to generate n-tuple binary codes at the output. Since shift registers (delay

elements) are used, convolutional codes are linear devices with memory. The status of the

shift registers is named the state of the encoder. As shown in Fig. 3.1,u is the information

bit shifted into the register from the left one bit at a time, and two encoded bits v(1),

v(2) are generated from the XOR-adders. In the (2, 1) encoder shown in Fig. 3.1, the

information sequence

u = u0u1 . . . ut . . . (3.1)
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is encoded into v(1) = v
(1)
0 v

(1)
1 v

(1)
2 . . .

v(2) = v
(2)
0 v

(2)
1 v

(2)
2 . . .

(3.2)

and the encoded sequence is serialized as

v = v
(1)
0 v

(2)
0 v

(1)
1 v

(2)
1 v

(1)
2 v

(2)
2 . . . (3.3)

At interval t, the input of the encoder is ut. Meanwhile, input ut−1 and ut−2 are still

stored in the delay elements in the encoder. Therefore, the output of this encoder can be

described as follows: v
(1)
t = ut + ut−2

v
(2)
t = ut + ut−1 + ut−2.

(3.4)

3.2 Representations of Convolutional Encoders

In a (n, k) binary convolutional encoder (without feedback) with m delay memories

vt = f(ut, ut−1, · · · , ut−m). (3.5)

Since the encoder is a linear system, (3.5) can be written as

vt = utG0 + ut−1G1 + · · ·+ ut−mGm (3.6)

A general convolutional encoder can be illustrated in Fig. 3.2.

u
t-1

u
t-2

u
t-m...

+

G
0

... +

...

+

u
t

v
t

G
m-1

G
1

G
m

 

Figure 3.2: General convolutional encoder
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Note that (3.6) in shorter notation becomes

v = uG, (3.7)

where



G0 G1 . . . Gm

G0 G1 . . . Gm

G0 G1 . . . Gm

G0 G1 . . . Gm

...
...

...
...

...
...

...
...


It is called a semi-infinite representation of a convolutional code.

A rate-k/n convolutional encoder is represented by nk generator sequences

g
(j)
i = (g

(j)
i,0 , g

(j)
i,1 , . . . , g

(j)
i,m), (3.8)

where i = 1, 2, . . . , k and j = 1, 2, . . . , n.

The convolutional encoding operation can be expressed as

v(j) =
k∑
i=1

u(i) ∗ g
(j)
i , j = 1, 2, . . . , n. (3.9)

Example 3.1 For instance, the encoder in (3.4) has generator sequencesg(1) = (101)

g(2) = (111)
(3.10)

and the composite generator sequence is

g = 11 01 11. (3.11)

The generator sequences g
(j)
i can be presented as polynomials of finite degree in the
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delay operation D as

g
(j)
i = g

(j)
i,0 + g

(j)
i,1D + · · ·+ g

(j)
i,mD

m. (3.12)

The generator sequences in (3.10) can be presented with polynomial asg(1)(D) = 1 +D2

g(2)(D) = 1 +D +D2
(3.13)

An (n, k, m) encoder can be represented by a k×n matrix G(D), called the polynomial

generator matrix and given by


g
(1)
1 (D) g

(2)
1 (D) . . . g

(n)
1 (D)

g
(1)
2 (D) g

(2)
2 (D) . . . g

(n)
2 (D)

...
...

...

g
(1)
k (D) g

(2)
k (D) . . . g

(n)
k (D)



in which each entry is a polynomial.

Example 3.2 For (3.13), the polynomial generator matrix is

G(D) = [1 +D2 1 +D +D2] (3.14)

3.3 Basic Definitions for Convolutional Codes

Definition 3.1 The constraint length for the i’th input is

vi = max
1≤j≤n

[deg(g
(j)
i (D))] (3.15)

Definition 3.2 The overall constraint length is

v =
k∑
i=1

vi (3.16)
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Definition 3.3 The memory order is

m = max
1≤j≤k

vi (3.17)

Definition 3.4 The output constraint length is

nA = n(m+ 1) (3.18)

Definition 3.5 The input constraint length is

K = v + k (3.19)

3.4 Graphical Representation of Convolutional

Codes

A convolutional code can be represented as a code tree. The code tree generated by the

encoder (3.13) can be shown as in Fig. 3.3.

Also, a convolutional code can be represented by either a state diagram or a trellis

diagram. Fig. 3.4 is the trellis diagram of a convolutional code in one interval. Fig. 3.5 is

a typical state diagram of a convolutional code. The encoder shown in these two diagrams

is similar to that of Fig. 3.3.

Graphical representations of convolutional codes not only improve the understanding

of the encoding operations, but also illustrate the decoding process in a vivid way.

3.5 Distance Properties of Convolutional Codes

For a two dimensional Euclidean space, each point can be specified by a pair of real

number (x, y). The Euclidean distance between the points (x1, y1) and (x2, y2) is

dE ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2 (3.20)
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00

11

01

10

00
11

00

11

01

10

00
11

01
10

11
00

10
01

11

00

10

01

00
11

01
10

11
00

10
01

0

1

Transmitted

sequence

Input

 

Figure 3.3: Tree structure of a convolutional code

The Euclidean distance measure has the following properties:

1) dE(u, v) > 0 for u 6= v, and dE(u, v) = 0 for u = v;

2) dE(u, v) = dE(v, u);

3) dE(u, v) + dE(v, w) ≥ dE(u,w)

For a code C, the minimum distance is given by

dmin = min{dE(vi, vj), vi 6= vj ∈ C} (3.21)
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State 00

State 01

State 11

00(0)

11
(0

)

01(0
)

10
(0

)

11(1)

00(1)

10(1)

01(1)

State 10

 

Figure 3.4: Trellis diagram of a convolutional code

00

10 01

11

1/11 0/11

0/00

1/10 0/10

1/01

1/00

0/01

 

Figure 3.5: State diagram of a convolutional code

Definition 3.6 The Hamming weight wH(v) of an n-length word v ∈ GF (2r) is defined
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as the number of nonzero elements in the n-tuple.

Definition 3.7 Let n-length words v1, v2 ∈ GF (2r). The Hamming distance dH(v1, v2)

between v1 and v2 is given by

dH(v1, v2) = wH(v1 − v2). (3.22)

Costello introduced a free distance measurement for convolutional codes.

Definition 3.8 The free distance of a convolutional code is defined as

dfree = min{dH(v, v′) : u 6= u′} (3.23)

= min{wH(v) : u 6= 0} (3.24)

= min{wH(uG) : u 6= 0} (3.25)

Remark 3.1 The free distance is the minimum Hamming distance between any two dis-

tinct codewords generated by a convolutional encoder. The maximum error-correcting

capability of a code or an encoder is determined by its free distance .

Theorem 3.1 The maximum error-correcting capability tfree of a code or an encoder is

tfree =

⌊
dfree − 1

2

⌋
(3.26)

Definition 3.9 The distance spectrum of a code or an encoder is the sequence

n(dfree + i)i = 0, 1, 2, . . . (3.27)

where n(dfree + i) denotes the number of weight dfree + i codewords that correspond to a

nonzero first information block and all-zero last m information blocks.
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3.6 Degenerate and Catastrophic Convolutional

Code Encoder

In the above sections, some properties and analysis measurements of convolutional codes

are presented. Besides these disciplines, degenerate and catastrophic properties of a con-

volutional code are also important conditions to judge good codes.

Definition 3.10 A rate-1/n, constraint length v convolutional encoder is nondegenerate

if:

1) there is j1 ∈ {1, 2, . . . , n} such that g
(j1)
0 = 1,

2) there is j2 ∈ {1, 2, . . . , n} such that g
(j2)
v = 1, and

3) there is j1, j2 ∈ {1, 2, . . . , n}, j1 6= j2 such that g(j1) 6= g(j2).

Remark 3.2 Nondegenerate convolutional encoders are effectively of shorter constraint

length.

Definition 3.11 A convolutional code is catastrophic if and only if its state diagram has

a zero-weight cycle other than the self-loop around the all-zero state.

Example 3.3 The state diagram of a (2, 1, 2) convolutional encoder with generator

polynomial g(1)(D) = 1+D and g(2)(D) = 1+D2 is shown in Fig. 3.6. The input sequence

u = 111 can result in output sequence v = 11010000, which will make the decoder estimate

an all-zero sequence. Therefore, it will make a catastrophic error.

3.7 Punctured Codes, Rate-Compatible Encoder

and Unequal Error Protection

Definition 3.12 A punctured code is obtained by periodically deleting (or puncturing)

encoded symbols from ordinary encoded sequences. This process is named puncturing.

Definition 3.13 If a rate-1/n parent encoder is punctured by deleting some of the nP

encoded bits corresponding to P information bits, then P is called the puncturing period.
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Figure 3.6: State diagram of a catastrophic convolutional code

After puncturing the symbols from the encoded sequences, the encoded sequences

corresponding to the same amount of information are reduced. Therefore, the rate of

the encoder is increased by the puncturing process. The ordinary convolutional codes

are named the parent codes. The punctured codes generated from the parent codes are

named the child codes.

Definition 3.14 For a rate-1/n parent encoder, the puncturing pattern can be represented

as an n× P matrix P whose elements are 1’s and 0’s, with a 1 indicating inclusion and

a 0 indicating deletion.

Example 3.4 Given an encoder with generator polynomial

G =
(

1 +D2 1 +D +D2
)

(3.28)

and a puncturing matrix as

P =

(
1 0

1 1

)
(3.29)

it indicates that within two encoded blocks, the first bit of the second encoded block is
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3. Convolutional Codes and Viterbi Decoding

deleted.

Fig.3.7 shows the puncturing process in Example 3.4, where ’x’ denotes the bit deleted.

Note that the solid lines represent information bit ’0’ and the dash lines represent infor-

mation bit ’1’.

The parent encoder in Example 3.4 is punctured into an R = 2/3 encoder, and the

equivalent R = 2/3 encoder can be shown as in Fig.3.8. Note that the solid lines represent

information bits ’00’, the dash lines represent information bits ’01’, the dash dotted lines

represent information bits ’10’ and the dotted lines represent information bit ’11’.

State 00

State 01

State 11

00

11

01

10
11

00

1001

State 10

X0

X
1

X1
X

0

X
1

X0

X0X1

 

Figure 3.7: Trellis diagram of a punctured convolutional encoder
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Figure 3.8: Trellis diagram of a R = 2/3 convolutional encoder

The puncturing process reduces the free distance of the parent code. However, the

free distance of the punctured code can be comparable with that of an ordinary convolu-

tional code having the same rate and constraint length as the final rate after puncturing.

3-11



3. Convolutional Codes and Viterbi Decoding

Meanwhile, the decoding of the punctured codes is simpler than that of the ordinary

convolutional code with the same rate and constraint length. That is the reason that

punctured codes are widely used in practical applications.

The progress in communication technology led to a significant increase of the types

and numbers of applications. Furthermore, due to a variety of protection requirements

on transmission, channel coding for unequal error protection (UEP) has attracted a lot

of interests.

As excellent error control codes to achieve UEP, punctured codes are widely exploited

in commercial use. Despite the reduction in the free distance, punctured codes enhance

the efficiency of the bandwidth use of the channel and simplicity of the decoder structure.

Moreover, the free distance of punctured code is comparable with that of a conventional

convolutional code having the same rate and constraint length as the final rate after

puncturing.

3.8 Maximum Likelihood Decoding

In a typical digital communication or storage system as shown in Fig. 3.9, encoded infor-

mation v is sent via the channels and corrupted by noise e. At the receiver, the decoder

attempts to recover the words transmitted and get the most likely word sequences v′, and

inverse the v′ to get the most likely information u′. Here v′ is the most likely codeword

for the case that r is received. This operation is called maximum likelihood decoding.

Given channel transition probabilities below 0.5, the maximum likelihood decoding for a

binary symmetric channel is equivalent to selection of the codeword which minimizes the

Hamming distance between r and v.

3.9 Viterbi Algorithm

Forney showed that the Viterbi algorithm is a maximum likelihood algorithm: given a

sequence r of observations of a discrete-state Markov process in memoryless noise, the

algorithm finds the state sequence v′ for which the a posteriori probability P (v′|r) is

maximum.
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Figure 3.9: A digital communication/storage system

Let X = {0, 1, . . . , B − 1} denote the state space of a Markov process and xt denotes

the state of this Markov process at time t, where xt ∈ X.

For a memoryless Markov process, let v′ denote the most likely sequence given r is

received, we can get

P (xt+1|x0, x1, . . . , xt) = P (xt+1|xt), (3.30)

P (v′|x) = P (v′|ξ) =
T−1∏
t=0

P (v′t|ξt) (3.31)

and

P (x, v′) =P (x)P (v′|x) (3.32)

=
T−1∏
t=0

P (xt+1|xt)
T−1∏
t=0

P (v′t|xt+1, xt), (3.33)

where ξt denotes the transition from a state xt to xt+1, and ξ denotes the transition

{ξ0, ξ1, . . . , ξT−1}.

To achieve the maximum likelihood decoding, we need to find the state sequence that

can maximize P (x|v′).

Let

λ(ξt) = − lnP (xt+1|xt)− lnP (v′t|ξt), (3.34)
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we obtain

− lnP (xt+1|xt) =
T−1∑
i=0

λ(ξi) (3.35)

Thus, according to (3.35), we need to look for the least
∑T−1

i=0 λ(ξi) to obtain the

maximum P (x|v′).

For state xt, the shortest path segment is called the survivor corresponding to xt, and

is denoted as χ(xt). For B states of time instance, we need to remember χ(xt) and their

length Γ(xt) = λ (χ(xt)).

Thus, the Viterbi algorithm can be shown as follows:

Storage:

1) χ(xt), 1 ≤ xt ≤ B

2) Γ(xt), 1 ≤ xt ≤ B

where t is the time index.

Assume that the start state is x0.

Initiation:

1) t=0

2) χ(x0) = x0; χ(b) arbitrary, b 6= x0

3) Γ(x0) = 0; Γ(b) =∞, b 6= x0

Recursion:

Repeat the following steps until t = T

1) Compute Γ(xt+1, xt) = Γ(xt) + λ(ξt), for all ξt ;

2) Γ(xt+1) = min (Γ(xt+1, xt)) for each xt+1; store Γ(xt+1) and corresponding χ(xi+1).
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3) Set t = t+ 1 and go to step 1.

Result: the shortest path is the survivor χ(xT ).

Hard-decision decoding takes a stream of bits and consider definitely each bit as 0 or

1. The decision mechanism is application-dependant, e.g., threshold detection.

Soft-decision decoding takes a stream of bits and consider each bit as 0 or 1 in a

probabilistic sense.

We assume the threshold detection is used at the receiver of a pulse amplitude mod-

ulation (PCM) system. Bits 0 and 1 are mapped into pulses with amplitudes −1mV

and 1mV respectively, and sent over the channel. Assume the noise over the channel is

Gaussian with the distribution (0, σ2).

For hard-decision decoding, the detector first decides an optimal threshold (in this

case is 0mV ). If the received signal is above the optimal threshold, we consider a bit

1 received; if the received signal is less than the optimal threshold, we consider a bit 0

received.

For soft-decision decoding, the decoder records the differences between the received

signal with either error-free amplitudes. The differences are inversely proportional to the

reliabilities of the decisions.

For one codeword with multiple dimensions, Euclidean distances are calculated to

make the soft-decision decoding.

Example 3.5 The repetition code of length 3 has following 2 codewords:

c1 =000→ (−1,−1,−1) (3.36)

c2 =111→ (1, 1, 1) (3.37)

If the received signal is r = (1.25, 0.91,−0.95), for the soft decisions the Euclidean distance

is

d(r, c1) =
√

(1.25 + 1)2 + (0.91 + 1)2 + (−0.95 + 1)2 = 2.95 (3.38)

and

d(r, c2) =
√

(1.25− 1)2 + (0.91− 1)2 + (−0.95− 1)2 = 1.97 (3.39)
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A soft-decision decoder would say more likely, the codeword 111 was sent, since d(r, c2) <

d(r, c1).

Example 3.6 (hard-decision Viterbi) Assume the message is 0111100110. The en-

coder can be defined by the generator matrix g(D) = [1 + D2, 1 + D + D2]. Then the

encoded sequence 00 11 10 01 01 10 11 11 10 10 is sent over the channel. But we received

0001 10 11 01 10 11 11 10 10. The underlined symbols are disturbed by additive errors.

Fig. 3.10 shows how to retrieve the message based on a disturbed received sequence by

using the Viterbi algorithm.

00 01 10 11 01 10 11 11 10 10Received:

00

Decoded: 0 1 1 1 1 0 0 1 1 0

01
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11

00

11

00

11
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2
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Figure 3.10: An example of hard-decision Viterbi decoding

3.10 Error Upper Bounds for Time-Invariant

Convolutional codes

Consider a typical convolutional code in Fig. 3.11. The self-loop at the zero-state can be

split in two: the source state and the sink state. Let W 0 = 1, W 1 and W 2 denote the

weight of the output of the branches in the state diagram. We can obtain a signal flow

diagram as shown in Fig. 3.12.

Definition 3.15 In a typical state diagram of a convolutional code, let the input to the

source (left zero state) be 1 and let T (W ) denote the generating function for the path

weight W . We call T (W ) the path weight enumerator.

Example 3.7 In Fig. 3.12, the branches are labeled W 0 = 1, W or W 2, where the

exponent corresponds to the weight of the particular branch.
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Figure 3.11: State diagram of a (2,1) convolutional encoder
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Figure 3.12: Signal flow diagram of a (2,1) convolutional encoder

Let ψ1, ψ2 and ψ3 be the dummy variables representing the weights to the intermediate

nodes. According to Fig. 3.12, when the input to the left zero state is 1, we can obtain:

ψ1 =ψ3 +W 2 (3.40)
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ψ2 =Wψ1 +Wψ2 (3.41)

ψ3 =Wψ1 +Wψ2 (3.42)

Thus, according to Definition 3.15 and Fig. 3.12, we can get:

T (W ) = W 2ψ3. (3.43)

Combining (3.40), (3.41), (3.42) and (3.43) we get

T (W ) = W 5/(1− 2W ) (3.44)

(3.44) can be also represented as

T (W ) = W 5 + 2W 6 + 4W 7 + . . .+ 2kW k+5 + . . . (3.45)

According to (3.45), we find that this encoder has dfree = 5 and the spectral components

are 1, 2, 4 . . .

3.11 Viterbi Upper Bounds of Burst Error

Probability

Definition 3.16 In the trellis diagram of a convolutional code, the burst error probability

PB is the probability that an error burst starts at a given node.

Theorem 3.2 The burst error probability when using a convolutional code for communi-

cation over the binary symmetric channel (BSC) with crossover probability ε and maximum-

likelihood decoding is upper-bounded by

PB <
∞∑

d=dfree

nd

(
2
√
ε(1− ε)

)d
(3.46)

=T (W )|
W=2
√
ε(1−ε) (3.47)

where T (W ) is the path weight enumerator of the encoder.
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4
Interleaving and

Concatenated Coding System

4.1 Interleaving

In practice, the interleaving technique is widely used to cooperate with error correcting

codes to improve the burst error correcting capability. The interleaving technique is

implemented by rearranging the order of symbols transmitted.

Suppose now nλ symbols are needed to be transmitted. As shown in Fig. 4.1, these

symbols can be grouped into λ segments and each segment has n symbols. In the trans-

mission, the first symbols of each segment are first sent then the second symbols of each

segment, and so on. Here λ is named the interleaving depth.

In a practical channel, it is more common that consecutive symbols are affected. This

type of error is called a burst error. As shown in Fig. 4.2, where the symbols affected

are marked, while the transmission is corrupted by a burst error, a long sequence of

symbols becomes unreliable. However, with the interleaving technique, the long sequence

of error symbols is broken into smaller pieces as shown in Fig.4.3, which should be fit to

be corrected by the error correcting code.

For some specific applications, symbols are encoded or inserted in certain positions

intentionally, such as the Marker codes used to indicate the boundaries of symbols. The

technique to change the order of the other symbols while keeping the positions of these

specific symbols is named partial interleaving. A typical partial interleaving is shown in

Fig. 4.4.
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Figure 4.1: An interleaving system
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Figure 4.2: Error pattern before de-interleaving
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Figure 4.3: Error pattern after de-interleaving

4.2 Concatenated System

A concatenated code is one coding system that uses two levels of coding, an inner code

and an outer code, to achieve the desired error performance. A concatenated coding

system using a Viterbi-decoded convolutional inner code and a Reed-Solomon outer code

is widely utilized in practical applications.

In this system as shown in Fig. 4.5, as the inner decoder, the Viterbi algorithm decoder

can decode the soft quantized code from the demodulator. And the burst errors generated

by the Viterbi decoder can be processed by the combined decoding techniques of the Reed-
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Solomon decoder and de-interleaving.
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Figure 4.4: Partial interleaving
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Figure 4.5: A concatenated coding system
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