Tutorial Sheet 4: Queueing Theory: Beyond M/M/n Queues

Exercise 1: For the mathematically inclined: Prove Palm's identity:

$$
m_{i}=\int_{0}^{\infty} X^{i} p_{x}(X) d x=\int_{0}^{\infty} i X^{i-1}\left[1-P_{x}(X)\right] d x
$$

What are the specific forms for the mean and variance?
Exercise 2: Consider the 1024:128 concentrator shown in figure 3.1. Assuming the offered traffic per line is 0.09 Erl , determine the blocking probability if the concentrator is implemented as a single switch.
For the three-stage implementation in figure 3.1, estimate the blocking probability with the same level of offered traffic.

Exercise 3: For the 1024:128 line concentrator, the proposal is to use $64: 16$ switches in the first stage, $16: 8$ in the second stage and $8: 8$ in the third stage. Draw the switch, showing the interconnections between stages. (Show only the first, second and last modules in each stage.)
Recalculate the the blocking probability.
Exercise 4: A 1000 -line to 120 channel concentrator is proposed. The 120 output channels are implemented as four 30 -channel TDM links. Compare two implementations: a) any of the thousand input channels can access any available output time slot; and b) the input lines are allocated to four 250 -line groups and each group can access only one TDM line.

Exercise 5: A queue with Markov arrivals with $\lambda=1$ has a single server which has a deterministic service time with holding time $H=0.8$. Determine the average queue length and delay by the most appropriate method.

Exercise 6: The paper by Gans et al proposes a method for estimating the mean waiting time for a small call centre as

$$
E[\text { Wait for } \mathrm{M} / \mathrm{G} / \mathrm{N}] \simeq E[\text { Wait for } \mathrm{M} / \mathrm{M} / \mathrm{N}] \times \frac{1+C^{2}}{2}
$$

where C is the coefficient of variation of the service time.
Apply this method to a queue with Markov arrivals with $\lambda=1$, a single server which has a general service time distibution with holding time $H=0.6$ and standard deviation $\simeq=0.25$. Compare the result to that given by the Pollaczek-Khintchine equations.

