
ELEN 4017 – Network Fundamentals

LAB # 2 - Socket Programming

Objective:

1. Get introduced to network/socket programming.

2. Get familiarized with the classes and methods in Python language which are

used for basic socket programming.

3. Create a basic Client and a Server based on TCP and UDP sockets in Python

language.

Instructions:

1. This lab must be completed individually by each student.

2. An individual lab report, consisting of responses to the tasks given in this

handout, must be submitted to the demonstrators for marking.

3. In addition to the report, demonstrators may ask questions to test your

understanding of the material and marks for the lab will be allocated based on

your ability to answer the questions.

4. Consult the references in the end to perform your tasks. Section 2.7 of Kurose

book (6th edition) has information on how to create a basic client and server in

Python.

5. You MUST run the server first before running the client.

6. Please do not use port numbers below 1024 as they may be reserved for

some existing networking service/application.

7. The usage of different python classes/methods might vary based on the

version of Python being used.

Introduction:

As per our discussions from the class, a networking application consists of a client
process and a server process which communicate with each other via sockets.
Sockets are interfaces/ APIs with which the application layer/ network application
developer interacts with the rest of the network. Recall that there are two types of
sockets 1) TCP sockets and 2) UDP sockets.
TCP is connection oriented and provides a reliable byte-stream channel through
which data flows between two end systems. UDP is connectionless and sends
independent packets of data from one end system to the other, without any
guarantees about delivery [1].

Below is a sequence of actions that need to be implemented by a TCP server and

client in order to establish a client server application. Python class/method

corresponding to each action is also mentioned alongside each action in

parentheses.

 TCP Server:

1. Server creates a TCP socket. (socket.socket())

2. It then chooses a port number and IP address and attaches the

socket with this port number and IP address. (bind())

3. Listens for an incoming TCP connection request from the client

4. If a connection request is received from a client, it creates a new

socket for the connection with that particular client. (accept())

5. Starts sending and receiving data from the client. (send() and

recv())

6. Closes all the sockets, if no further communication with clients is

intended. (close())

TCP Client:

1. If server is already running:

a. Get IP address and port number of server

b. Create a TCP socket (socket.socket())

c. Send a TCP connection request from the client socket to the

server socket (connect()). If success

i. Send and receive data with the server

ii. Close sockets when no more communication with the

server is intended

In this lab we aim to create basic client and server processes for an ‘echo’

application by making use of relevant classes and methods in Python

language.

Tasks:

1. Based on the sequence of actions mentioned above for TCP client and

server, create a basic TCP server and a TCP client. For simplicity, both the

client and the server can run on the same PC. The client process requires

input from the user, and then sends it to the server process. The server

process prints the sentence upon receiving it.

.

2. Modify the code so that the server echoes back whatever it listens from the

client

3. Modify the code so that data could be sent more than once from client to

server and the server only closes the connection upon receiving a specific

command e.g. stop, exit etc.

4. Modify the code so that the client and the server code makes use of UDP

sockets instead of TCP sockets. Note that no connection is required for UDP

transfers. You can make use of the arguments of the socket.socket() method

to make either a TCP or a UDP socket.

References:

1. J. Kurose and K. Ross, "Computer Networking: A Top Down Approach-

(Section 2.7)", 6th Edition. Pearson Education. 2012

2. https://docs.python.org/3/library/socket.html

https://docs.python.org/3/library/socket.html

