ELEN4017: Network Fundamentals
Lab 4

Objective

The objective of this lab is to use the Wireshark tool to analyse features of TCP in
the transport layer and IP in the network layer.

Instructions:

e This lab must be completed individually by each student.

e There are two parts of this lab: ‘Lab4a’ about TCP and ‘Lab4b’ about IP.

e The handout of ‘Lab4a’ contains instructions for carrying out the lab and
has also got 12 questions. Similarly, handout for ‘Lab4b’ contains lab
instructions as well as 15 associated questions.

e An individual lab report, consisting of answers to the questions in the
handouts, must be submitted to the demonstrators before the end of the
session.

e In addition to the report, demonstrators may ask questions to test your
understanding of the material and marks for the lab will be allocated based
on your ability to answer the questions.

Lab 4a: TCP in Wireshark
Computer Networking

Supplement to Computer Networking: A Top-Down AlopzDownApproach
th
Approach, 6 ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and | remember. Involve me and |
understand.” Chinese proverb

© 2005-2012, J.F Kurose and K.W. Ross, All Rights Reserved KUROSE | ROSS

In this lab, we’ll investigate the behavior of the celebrated TCP protocol in detail. We’ll do so by
analyzing a trace of the TCP segments sent and received in transferring a 150KB file (containing the
text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your computer to a remote server.
We’ll study TCP’s use of sequence and acknowledgement numbers for providing reliable data transfer;
we’ll see TCP’s congestion control algorithm — slow start and congestion avoidance — in action; and
we’ll look at TCP’s receiver-advertised flow control mechanism. We’ll also briefly consider TCP
connection setup and we’ll investigate the performance (throughput and round-trip time) of the TCP
connection between your computer and the server.

Before beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the fext .

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet trace of the
TCP transfer of a file from your computer to a remote server. You’ll do so by accessing a Web page
that will allow you to enter the name of a file stored on your computer (which contains the ASCII text
of Alice in Wonderland), and then transfer the file to a Web server using the HTTP POST method (see
section 2.2.3 in the text). We’re using the POST method rather than the GET method as we’d like to
transfer a large amount of data from your computer to another computer. Of course, we’ll be running
Wireshark during this time to obtain the trace of the TCP segments sent and received from your
computer.

'References to figures and sections are for the 6"edition of our text, Computer Networks, A Top-down
Approach, 6 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

Do the following:

e Start up your web browser. Go the http://gaia.cs.umass.edu/wiresharklabs/alice.txt and
retrieve an ASCII copy of Alice in Wonderland. Store this file somewhere on your computer.

e Next go to http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-file1l.html.
You should see a screen that looks like the screenshot shown in figure 1:

=) Upload page for TCP Wireshark Lab - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

G- -5) [L1 hepsigaia.cs.umass. edujwireshark-labs/TCP-wireshark-fie1. bt v ® s [[GL

|Gl andrew appel programming - Google Search || Upload page for TCP Wireshark Lab

Upload page for TCP Wireshark Lab
Computer Networking: A Top Down Approach, 4th edition
Copyright 2007 J.F. Kurose and K W. Ross, All Rights Reserved

> B

If you have followed the instructions for the TCP Ethereal Lab, you have aiready downloaded an ASCIl copy of Alice and Wonderland from
http:ffaaia.cs.umass edulethereal-labs/alice bd and you also already have the Wireshark packet sniffer running and capturing packets on
your computer.

Click on the Browse button below to select the directoryffile name for the copy of alice td that is stored on your computer

Once you have selected the file, click on the "Upload alice txt file" button below. This will cause your browser to send a copy of alice bd over
an HTTP connection (Lsing TCP) to the web server at gaia.cs.umass.edu. After clicking on the button, wait until a short message is
displayed indicating th= the upload is complete. Then stop your Wireshark packet sniffer - you're ready to begin analyzing the TCP transfer
of alice bd from your camputer to gaia.cs.umass.edull

Upload alice.txt file

B Find: [request @ Find Next © Find Previous [=] Highlight all [] Match case

Done

Figure 1: Upload page for TCP Wireshark Lab

e Use the Browse button in this form to enter the name of the file (full path name) on your
computer containing Alice in Wonderland (or do so manually). Don’t yet press the “Upload
alice.txt file” button.

e Now start up Wireshark and begin packet capture (Capture->Start) and then press OK on the
Wireshark Packet Capture Options screen (we’ll not need to select any options here).

e Returning to your browser, press the “Upload alice.txt file” button to upload the file to the
gaia.cs.umass.edu server. Once the file has been uploaded, a short congratulations message
will be displayed in your browser window.

e Stop Wireshark packet capture. Your Wireshark window should look similar to the window
shown in figure 2:

If you are unable to run Wireshark on a live network connection, you can download a packet trace

- . . 2
file that was captured while following the steps above on one of the author’s computers . You may
well find it valuable to download this trace even if you’ve captured your own trace and use it, as

| 8 00 \ tcp-ethereal-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]
!Eile Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

1
l
- |
{
[

|
== > : X = @ O @
el cEXeL e wT L [EE QD @M
|
i Filter: |tcp ;' Expression... Clear
‘ No. |Time |Source I Destination | Protocol | Length| Info =
i 20 0.30€692 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem
| 21 0.307571 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassenm
| 22 0.308699 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reassem
| 23 0.308553 192.168.1.102 128.119.245.12 TCP 946 [TCP segment of a reasser
24 0.356437 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
25 0.40C164 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
26 0.448613 128.119.245.12 192.168.1.102 TCP 60 http = health-polling [AC
27 0.50c029 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
28 0.545052 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
29 0.57€417 128.119.245.12 192.168.1.102 TCP 60 http > health-pouing [ac
| 30 0.57€671 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reasser
|
| 32 0.57€329 192.168.1.102 128.119.245.12 TCP 1514 [TCP segment of a reasser v
e = =) >
| Frame 31: 154 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) -
|b Ethernet II, Src: Actionte_8a:70:la (00:20:e0:8a:70:1a), Dst: LinksysG da:af:73 (00:06:25:da:af:73)
v Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)
| Version: 4
Header length: 20 bytes
| D Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: Ox00: Not-ECT (Not ECN-Capable Transport))
| Total Length: 1500
| Identification: Oxle2f (7727)
| P Flags: ox02 (Don't Fragment)
| Fragment offset: 0
Time to live: 128
: Protocol: TCP (6) v
/0000 00 06 25 da af 73 00 20 <0 8a 70 la 08 00 45 00 ..%..8. ..p...E. N
0010 05 dc le 2f 40 00 80 06 9f Sa cO a8 01 66 80 77 cenh@ssin a2asateW m
0020 f5 0c 04 39 00 50 0d d6 4a dd 34 a2 74 1a 50 10 P.. J.4.t.P. |
0030 44 70 91 a4 00 00 20 74 6f 20 68 65 72 20 67 72 Dp.... t o her gr
/0040 65 61 74 20 64 65 6c 69 67 68 74 20 69 74 20 66 eat deli ght it f Y

\©[File: "/Users/kurose/Umass/...] Packets: 213 Displayed: 202 Marked: O Load time: 0:00.009 { Profile: Default

Figure 2: Wireshark window showing packet capture

2. A first look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level view of the
trace.

o First, filter the packets displayed in the Wireshark window by entering “tcp” (lowercase,
no quotes, and don’t forget to press return after entering!) into the display filter
specification window towards the top of the Wireshark window.

What you should see is series of TCP and HTTP messages between your computer and
gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN message.
You should see an HTTP POST message. Depending on the version of Wireshark you are using,
you might see a series of “HTTP Continuation” messages being sent from your computer to
gaia.cs.umass.edu.

Recall from our discussion in the earlier HTTP Wireshark lab, that there is no such thing as an
HTTP Continuation message — this is Wireshark’s way of indicating that there are multiple TCP
segments being used to carry a single HTTP message.

“Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file tcpethereal-
trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it into
Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the tcp-ethereal-trace-1
trace file.

In more recent versions of Wireshark, you’ll see “[TCP segment of a reassembled PDU]” in the Info
column of the Wireshark display to indicate that this TCP segment contains data that belongs to an
upper layer protocol message (in our case here, HTTP). You should also see TCP ACK segments
being returned from gaia.cs.umass.edu to your computer.

Answer the following questions, by opening the Wireshark captured packet file tcpethereal-trace-1 in
http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (that is download the trace and open that
trace in Wireshark; see footnote 2).

1. What is the IP address and TCP port number used by the client computer (source) that is
transferring the file to gaia.cs.umass.edu? To answer this question, it’s probably easiest to
select an HTTP message and explore the details of the TCP packet used to carry this HTTP
message, using the “details of the selected packet header window” (refer to Figure 2 in the
“Getting Started with Wireshark™ Lab if you’re uncertain about the Wireshark windows.

2. What is the IP address of gaia.cs.umass.edu? On what port number is it sending and receiving
TCP segments for this connection?

If you have been able to create your own trace, answer the following question:

3. What is the IP address and TCP port number used by your client computer (source)
to transfer the file to gaia.cs.umass.edu?

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of captured packets”
window so that it shows information about the TCP segments containing the HTTP messages, rather
than about the HTTP messages. To have Wireshark do this, select Analyze->Enabled Protocols. Then
uncheck the HTTP box and select OK. You should now see a Wireshark window that looks like the
screenshot given in figure 3:

800 \ tcp-ethereal-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]
File Edit View Co Capture Analyze Statistics Telephony Tools Internals Help

BEdedw tEXSL newvxwTFEEE QAR @&® -

Filter: |tcp j Expression... Clear
No. |Time |Source l Destination | Protocol| Length| Info @
2 0.023172 128.113.245.12 192.168.1.102 TCP 62 http > health-polling [SY
3 0.023265 192.168.1.102 128.119.245.12 TCP 54 health-polling = http [AC
4 0.026477 192.163.1.102 128.119.245.12 TCP 619 health-polling > http [PS
5 0.041737 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [PS
6 0.053937 128.113.245.12 192.168.1.102 TCP 60 http > health-polling [AC
7 0.054026 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
8 0.054690 192.163.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
9 0.077294 128.119.245.12 192.168.1.102 TCP 60 http > health-polling [AC
10 0.077405 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
11 0.078157 192.168.1.102 128.119.245.12 TCP 1514 health-polling > http [AC
12 0.124085 128.1139.245.12 192.168.1.102 TCP 60 http > health-polling [AC
13 0.124185 192.163.1.102 128.119.245.12 TCP 1201 health-polling > http [PS v
«E =] [S
P Frame 1: 62 bytes on wire (436 bits), 62 bytes captured (496 bits) A
v Ethernet II, Src: Actionte_8a:70:la (00:20:e0:8a:70:1a), Dst: LinksysG da:af:73 (00:06:25:da:af:73)
v Destination: LinksysG_da:af:73 (00:06:25:da:af:73)
Address: LinksysG da:af:73 (00:06:25:da:af:73)
....... O cevv wevs wuwn vw.. = 1IG bit: Individual address (unicast)
03, = LG bit: Globally unique address (factory default)

v Source: Actilonte_8a:70:1a (00:20:e0:8a:70:1a)
Address: Actionte_8a:70:1a (00:20:e0:8a:70:1a)
....... O .vvv vvvn wwew wo.. = IG bit: Individual address (unicast)
weee +200 tivt vive vvvn wu.. = LG bit: Globally unique address (factory default) v

2000 00 06 25 da af 73 00 20 <0 8a 70 la 08 00 45 00
0010 00 30 le 1d 40 00 80 06 a5 18 cO a8 Ol 66 80 77
2020 f5 Oc 04 89 00 50 0d d6 01 f4 00 00 00 0O 70 02
0030 40 00 f6 e9 00 00 02 04 0S5 b4 01 01 04 02

O[File: "/Users/kurose/Umass/... { Packets: 213 Displaved: 202 Marked: O Load time: 0:00.011 {Profile: Default

Figure 3: Wireshark window with TCP packets only

This is what we’re looking for - a series of TCP segments sent between your computer and
gaia.cs.umass.edu. We will use the packet trace that you have captured (and/or the packet trace zcp-
ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wiresharktraces.zip; see earlier footnote)
to study TCP behavior in the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

4. What is the sequence number of the TCP SYN segment that is used to initiate the TCP
connection between the client computer and gaia.cs.umass.edu? What is it in the segment that
identifies the segment as a SYN segment?

5. What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu to the client
computer in reply to the SYN? What is the value of the Acknowledgement field in the
SYNACK segment? How did gaia.cs.umass.edu determine that value? What is it in the
segment that identifies the segment as a SYNACK segment?

6. What is the sequence number of the TCP segment containing the HTTP POST command?
Note that in order to find the POST command, you’ll need to dig into the packet content field
at the bottom of the Wireshark window, looking for a segment with a “POST” within its
DATA field.

7. Consider the TCP segment containing the HTTP POST as the first segment in the TCP
connection. What are the sequence numbers of the first six segments in the TCP connection
(including the segment containing the HTTP POST)? At what time was each segment sent?
When was the ACK for each segment received? Given the difference between when each
TCP segment was sent, and when its acknowledgement was received, what is the RTT value
for each of the six segments? What is the EstimatedRTT value (see Section 3.5.3 in text)
after the receipt of each ACK?

Assume that the value of the EstimatedRTT is equal to the measured RTT for the first segment,
and then is computed using the EstimatedRTT equation in section 3.5.3 for all subsequent
segments.

Note: Wireshark has a nice feature that allows you to plot the RTT for each of the TCP
segments sent. Select a TCP segment in the “listing of captured packets” window that is
being sent from the client to the gaia.cs.umass.edu server. Then select: Statistics->TCP
Stream Graph->Round Trip Time Graph.

8. What is the length of each of the first six TCP segments? (See the note below)

Note: The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This
is because the computer on which the trace was gathered has an Ethernet card that limits the
length of the maximum IP packet to 1500 bytes (40 bytes of TCP/IP header data and 1460
bytes of TCP payload). This 1500 byte value is the standard maximum length allowed by
Ethernet. If your trace indicates a TCP length greater than 1500 bytes, and your computer is
using an Ethernet connection, then Wireshark is reporting the wrong TCP segment length; it
will likely also show only one large TCP segment rather than multiple smaller segments. Your
computer is indeed probably sending multiple smaller segments, as indicated by the ACKs it
receives. This inconsistency in reported segment lengths is due to the interaction between the
Ethernet driver and the Wireshark software. We recommend that if you have this
inconsistency, that you perform this lab using the provided trace file.

10.

11.

12.

What is the minimum amount of available buffer space advertised at the received for the
entire trace? Does the lack of receiver buffer space ever throttle the sender?

Avre there any retransmitted segments in the trace file? What did you check for (in the trace)
in order to answer this question?

How much data does the receiver typically acknowledge in an ACK? Can you identify
cases where the receiver is ACKing every other received segment (see Table 3.2 in the
text).

What is the throughput (bytes transferred per unit time) for the TCP connection? Explain
how you calculated this value.

Lab 4b: IP in Wireshark

Computer Networking

Supplement to Computer Networking: A Top-Down A Top-Down Approach
th

Approach, 6 ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and 1
understand.” Chinese proverb

© 2005-2012, J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

In this lab, we’ll investigate the IP protocol, focusing on the IP datagram. We’ll do so by analyzing a
trace of IP datagrams sent and received by an execution of the traceroute program. We’ll
investigate the various fields in the IP datagram, and study IP fragmentation in detail.

Before beginning this lab, you’ll probably want to review sections 1.4.3 in the text and section 3.4 of
RFC 2151 [https://www.rfc-editor.org/rfc/rfc2151.txt] to update yourself on the operation of the
traceroute program. You’ll also want to read Section 4.4 in the text, and probably also have RFC
791 [https://www.rfc-editor.org/rfc/rfc791.txt] on hand as well, for a discussion of the IP protocol.

1. Capturing packets from an execution of traceroute

In order to generate a trace of IP datagrams for this lab, we’ll use the traceroute program to send
datagrams of different sizes towards some destination, X. Recall that traceroute operates by first
sending one or more datagrams with the time-to-live (TTL) field in the IP header set to 1; it then sends
a series of one or more datagrams towards the same destination with a TTL value of 2; it then sends a
series of datagrams towards the same destination with a TTL value of 3; and so on. Recall that a router
must decrement the TTL in each received datagram by 1 (actually, RFC 791 says that the router must
decrement the TTL by at least one). If the TTL reaches 0, the router returns an ICMP message (type 11
— TTL-exceeded) to the sending host. As a result of this behavior, a datagram with a TTL of 1 (sent by
the host executing traceroute) will cause the router one hop away from the sender to send an
ICMP TTL-exceeded message back to the sender; the datagram sent with a TTL of 2 will cause the

'References to figures and sections are for the 6"edition of our text, Computer Networks, A Top-down
Approach, 6 ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

router two hops away to send an ICMP message back to the sender; the datagram sent with a TTL of
3 will cause the router three hops away to send an ICMP message back to the sender; and so on. In
this manner, the host executing traceroute can learn the identities of the routers between itself
and destination X by looking at the source IP addresses in the datagrams containing the ICMP TTL-
exceeded messages.

We’ll want to run traceroute and have it send datagrams of various lengths.

Windows. The tracert program provided with Windows does not allow one to change the
size of the ICMP echo request (ping) message sent by the tracert program. A nicer
Windows traceroute program is pingplotter, available both in free version and shareware
versions at http://www.pingplotter.com. Download and install pingplotter, and test it out by
performing a few traceroutes to your favorite sites. The size of the ICMP echo request
message can be explicitly set in pingplotter by selecting the menu item Edit-> Options-
>Packet Options and then filling in the Packet Size field. The default packet size is 56 bytes.
Once pingplotter has sent a series of packets with the increasing TTL values, it restarts the
sending process again with a TTL of 1, after waiting Trace Interval amount of time. The value
of Trace Interval and the number of intervals can be explicitly set in pingplotter.

Linux/Unix/MacOS. With the Unix/MacOS traceroute command, the size of the UDP
datagram sent towards the destination can be explicitly set by indicating the number of bytes
in the datagram; this value is entered in the traceroute command line immediately after
the name or address of the destination. For example, to send traceroute datagrams of 2000
bytes towards gaia.cs.umass.edu, the command would be: $traceroute
gaia.cs.umass.edu 2000

Do the following:

Start up Wireshark and begin packet capture (Capture->Start) and then press OK on the
Wireshark Packet Capture Options screen (we’ll not need to select any options here).

If you are using a Windows platform, start up pingplotter and enter the name of a target
destination in the “Address to Trace Window.” Enter 3 in the “# of times to Trace” field, so
you don’t gather too much data. Select the menu item Edit >Advanced Options->Packet
Options and enter a value of 56 in the Packet Size field and then press OK. Then press the
Trace button. You should see a pingplotter window that looks something like figure 4:

RI=EY
File Edit Yiew Help
Address to Trace: Target Name: gaia.cs.umass.edu - 0200
gaia.cs umass edu |P: 128.119.245.12 201-500
- -~ Sample Set Time: 812212004 9:57:07 PM - 8/22/2004 9:57.09 PM [s0tandup |
e e Hop|PL%] IP \ DNSName [Ava] Cur | Graph
nevwworld.cs.umass edu ﬁi 10.216.228.1 13 13 ° P
WYY CS.UMass edu 2 24.218.0.153 = 1 !
Wy aol.com 1 24128190197 ba .wsfdhel.ma.attbb.net 13 14 =
13\2:: &igs‘fwm 4 241280101 bar02-p6-0ndhmhel.ma.attbb.net 15 17 N
www pingplotter com '; fg;;g; ?g? bar02-p2-0.cmbrhel.ma.attbb.net 123 1; >a—~
7| 192583102 ABILENE-GIGAPOPNE.nox.org 0 2 1:
.g 1281192193 larc-t-106-8.gw.umass.edu 24 21 e—
g AR LR Lo J— 2 2 —&
0 12811924512 gaia.csumass.edu 19 20 e
Round Trip: 18 20
—Sampling —————————————
Fatinstolice: [3 =1 128.119.3.153 Graph time = § minutes
l—__l e J30%
Trace Interval: |1 second __J
o
 Statistics T5ap T5ap T5ap T5ep TR
Samples to include: |11 - gaia.cs.umass edu (128.119.245.12) Graph time = § minutes.
P =15 30%
°
a%53p al54p a'56p a%56p a%57p !
[[Trace Count: 3 | Displayed Samples: 1 to 3 * UPDATE AVAILABLE *

Figure 4: Pingplotter window

Next, send a set of datagrams with a longer length, by selecting Edit->Advanced Options-
>Packet Options and enter a value of 2000 in the Packet Size field and then press OK. Then
press the Resume button.

Finally, send a set of datagrams with a longer length, by selecting Edit>Advanced Options-
>Packet Options and enter a value of 3500 in the Packet Size field and then press OK. Then
press the Resume button.

Stop Wireshark tracing.

e If you are using a Unix or Mac platform, enter three traceroute commands, one with a length of
56 bytes, one with a length of 2000 bytes, and one with a length of 3500 bytes.

Stop Wireshark tracing.

If you are unable to run Wireshark on a live network connection, you can download a packet trace file that
was capture If you are unable to run Wireshark on a live network connection, you can download a packet
trace file that was captured while following the steps above on one of the author’s Windows computers2.
You may well find it valuable to download this trace even if you’ve captured your own trace and use it, as
well as your own trace, when you explore the questions below.

2. A look at the captured trace

In your trace, you should be able to see the series of ICMP Echo Request (in the case of Windows
machine) or the UDP segment (in the case of Unix) sent by your computer and the ICMP TTL-exceeded
messages returned to your computer by the intermediate routers. In the questions below, we’ll assume you
are using a Windows machine; the corresponding questions for the case of a Unix machine should be
Clear.

1. Select the first ICMP Echo Request message sent by your computer, and expand the Internet
Protocol part of the packet in the packet details window, as shown in figure 5. What is the IP
address of your computer?

2. Within the IP packet header, what is the value in the upper layer protocol field?

3. How many bytes are in the IP header? How many bytes are in the payload of the IP datagram?
Explain how you determined the number of payload bytes.

4. Has this IP datagram been fragmented? Explain how you determined whether or not the datagram
has been fragmented.

’ Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file ipethereal-
trace-1. The traces in this zip file were collected by Wireshark running on one of the book author’s computers, while
performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it into
Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the ip-ethereal-trace-1
trace file.

enon \| ip-etherezl-trace-1 [Wireshark 1.6.7 (SVN Rev 41973 from /trunk-1.6)]
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Bedee cEXeE neswTFELEE QAQAR @¥VE % O

Filter: | j Expression...

No. |Time |Source | Destinat on | Protocol| Length| Info
1 0.000000 Telebit 73:8d:ce Broadcast RP 60 Who has 192.168.1.1177 Tell 192.168.1.104
2 4.866867 192.168.1. 192.168.1. 174 Source port: 30955 Destination port:

3 4.868147 192.168.1. 192.168.1. 175 Source port: 30955 Destination port:
4 5.363536 = 174 Source port: Destination port:
S 5.364799 5 5 0 175 Source port: Destination port:
6 5.864428 2 S 5 als 174 Source port: Destination port:
7 5.865461 192.168.1. 192.168.1. 175 Source port: Destination port:

10 6.188629 192.168.1.102
11 5 1 c

128.59.23.100 ICMP 98 Echo (ping) request 1d=0x0300, seq=20739/849, ttl=2

12 6.208597 192.168.1.102 128.59.23. 100 IcMP 98 Echo (ping) request 1d=0x0300, seq=20995/850, ttl=3

“E =]
2

P Ethernet II, Src: Actionte_8a:70:la (00:20:e0:8a:70:1a), Dst: LinksysG da:af:73 (00:06:25:da:af:73)

v Internet Protocol Version 4, Src: 192.168.1.102 (192.168...102), Dst: 128.59.23.100 (128.59.23.100)
Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not ECN-Capable Transport))
Total Length: 84

Identification: 0x32do (13008)

Flags: 0Ox00

Fragment offset: 0

2000
2010
2020
2030
2040
2050
2060

-

-

@[Frame (frame), 98 bytes { Packets: 380 Displayed: 350 Marked: 0 Load time: 0:00.006 JProfile Default

Figure 5: Expanding the IP portion of the ICMP packet

Next, sort the traced packets according to IP source address by clicking on the Source column header; a
small downward pointing arrow should appear next to the word Source. If the arrow points up, click on the
Source column header again. Select the first ICMP Echo Request message sent by your computer, and
expand the Internet Protocol portion in the “details of selected packet header” window. In the “listing of
captured packets” window, you should see all of the subsequent ICMP messages (perhaps with additional
interspersed packets sent by other protocols running on your computer) below this first ICMP. Use the down
arrow to move through the ICMP messages sent by your computer.

5. Which fields in the IP datagram always change from one datagram to the next within this series of
ICMP messages sent by your computer?

6. Which fields stay constant? Which of the fields must stay constant? Which fields must change?
Why?

7. Describe the pattern you see in the values in the Identification field of the IP datagram

Next (with the packets still sorted by source address) find the series of ICMP TTL-exceeded replies sent to
your computer by the nearest (first hop) router.

8. What is the value in the Identification field and the TTL field?
9. Do these values remain unchanged for all of the ICMP TTL-exceeded replies sent to your computer
by the nearest (first hop) router? Why?

Fragmentation

Sort the packet listing according to time again by clicking on the Time column.

10. Find the first ICMP Echo Request message that was sent by your computer after you changed the
Packet Size in pingplotter to be 2000. Has that message been fragmented across more than one IP
datagram? [Note: if you find your packet has not been fragmented, you should download the zip
file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the ipethereal-trace-1
packet trace. If your computer has an Ethernet interface, a packet size of 2000 should cause

fragmentation.3]

11. Observe the first fragment of the fragmented IP datagram. What information in the IP header
indicates that the datagram been fragmented? What information in the IP header indicates whether
this is the first fragment versus a latter fragment? How long is this IP datagram?

12. Observe the second fragment of the fragmented IP datagram. What information in the IP header
indicates that this is not the first datagram fragment? Are the more fragments? How can you tell?

13. What fields change in the IP header between the first and second fragment?

Now find the first ICMP Echo Request message that was sent by your computer after you changed the
Packet Size in pingplotter to be 3500.

14. How many fragments were created from the original datagram?

15. What fields change in the IP header among the fragments?

‘The packets in the ip-ethereal-trace-1 trace file in http:/gaia.cs.umass.edu/wireshark-labs/wiresharktraces.zip are
all less that 1500 bytes. This is because the computer on which the trace was gathered has an Ethernet card that limits
the length of the maximum IP packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of upper-layer
protocol payload). This 1500 byte value is the standard maximum length allowed by Ethernet. If your trace indicates a
datagram longer 1500 bytes, and your computer is using an Ethernet connection, then Wireshark is reporting the wrong
IP datagram length; it will likely also show only one large IP datagram rather than multiple smaller datagrams.. This
inconsistency in reported lengths is due to the interaction between the Ethernet driver and the Wireshark software. We
recommend that if you have this inconsistency, that you perform this lab using the ip-ethereal-trace-1 trace file.

