
ELEN4017: Network Fundamentals 
Lab 1 

Lab 1: Introduction to Wireshark / HTTP analysis 
 
Objective 
 
There are two objectives of this lab as given below: 
 

1. To get familiarized with a widely-used tool for network protocol analysis, 
namely Wireshark (formerly Ethereal).  

2. To use Wireshark to analyse features of the HTTP protocol. 
 

Instructions: 
 

 This lab must be completed individually by each student. 

 There are two parts of this lab: ‘Lab1a’and ‘Lab1b’.  

 The handout of ‘Lab1a’ contains instructions for carrying out the lab and 
has also got 4 questions given at the end of the handout. Similarly, 
handout for ‘Lab1b’ contains lab instructions as well as 19 small questions.    

 An individual lab report, consisting of answers to the questions in the 
handouts, must be submitted to the demonstrators before the end of the 
session. 

 In addition to the report, demonstrators may ask questions to test your 
understanding of the material and marks for the lab will be allocated based 
on your ability to answer the questions. 

 

Other Information: 
 

 Please note that the screenshots/details related to Wireshark are with respect 
to version 1.6.2 and hence may differ if you are using a recent version of 
Wireshark. 

 If you are facing trouble with packet capture because of the proxy server, you 
can make use of one of the Wifi networks e.g. Wits-Wifi-Guest that does not 
require proxy. 



  Lab1a- Wireshark  
Getting Started   

Supplement to Computer Networking: A Top-Down 

Approach, 6
th 

ed., J.F. Kurose and K.W. Ross  

“Tell me and I forget. Show me and I remember. Involve me and I 
understand.” Chinese proverb  

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved  
 

One’s understanding of network protocols can often be greatly deepened by “seeing protocols in 

action” and by “playing around with protocols” – observing the sequence of messages exchanged 

between two protocol entities, delving down into the details of protocol operation, and causing 

protocols to perform certain actions and then observing these actions and their consequences. This can 

be done in simulated scenarios or in a “real” network environment such as the Internet. In the 

Wireshark labs you’ll be doing in this course, you’ll be running various network applications in 

different scenarios using your computer. You’ll observe the network protocols in your computer “in 

action,” interacting and exchanging messages with protocol entities executing elsewhere in the 

Internet.  Thus, you and your computer will be an integral part of these “live” labs.  You’ll observe, 

and you’ll learn, by doing.  

In this first part of your first Wireshark lab, you’ll get acquainted with Wireshark, and make some 

simple packet captures and observations.  

The basic tool for observing the messages exchanged between executing protocol entities is called a 

packet sniffer. As the name suggests, a packet sniffer captures (“sniffs”) messages being 

sent/received from/by your computer; it will also typically store and/or display the contents of the 

various protocol fields in these captured messages. A packet sniffer itself is passive. It observes 

messages being sent and received by applications and protocols running on your computer, but never 

sends packets itself. Similarly, received packets are never explicitly addressed to the packet sniffer.  

Instead, a packet sniffer receives a copy of packets that are sent/received from/by application and 

protocols executing on your machine.  

Figure 1 shows the structure of a packet sniffer. At the right of Figure 1 are the protocols (in this 

case, Internet protocols) and applications (such as a web browser or ftp client) that normally run 

on your computer.  The packet sniffer, shown within the dashed rectangle in Figure 1 is an 

addition to the usual software in your computer, and consists  



 

of two parts.  The packet capture library receives a copy of every link-layer frame that is sent from 

or received by your computer.  Recall from the discussion from section 1.5 in the text (Figure 1.24
1

) 

that messages exchanged by higher layer protocols such as HTTP, FTP, TCP, UDP, DNS, or IP all are 

eventually encapsulated in link-layer frames that are transmitted over physical media such as an 

Ethernet cable.  In Figure 1, the assumed physical media is an Ethernet, and so all upper-layer 

protocols are eventually encapsulated within an Ethernet frame.  Capturing all link-layer frames thus 

gives you all messages sent/received from/by all protocols and applications executing in your 

computer.  

 

 
   

               to/from network  

Figure 1: Packet sniffer structure  

The second component of a packet sniffer is the packet analyzer, which displays the contents of all 

fields within a protocol message.  In order to do so, the packet analyzer must “understand” the 

structure of all messages exchanged by protocols.  For example, suppose we are interested in 

displaying the various fields in messages exchanged by the HTTP protocol in Figure 1. The packet 

analyzer understands the format of Ethernet frames, and so can identify the IP datagram within an 

Ethernet frame.  It also understands the IP datagram format, so that it can extract the TCP segment 

within the IP datagram.  Finally, it understands the TCP segment structure, so it can extract the HTTP 

message contained in the TCP segment.  Finally, it understands the HTTP protocol and so, for 

example, knows that the first bytes of an HTTP message will contain the string “GET,” “POST,” or 

“HEAD,” as shown in Figure 2.8 in the text.  

We will be using the Wireshark packet sniffer [http://www.wireshark.org/] for these labs, allowing us 

to display the contents of messages being sent/received from/by protocols at different levels of the 

protocol stack.  (Technically speaking, Wireshark is a packet analyzer that uses a packet capture library 

in your computer). Wireshark is a free network protocol analyzer that runs on Windows, Linux/Unix, 

and Mac computers. It’s an ideal packet analyzer for our labs – it is stable, has a large user base and 

well-documented support that includes a user-guide 

(http://www.wireshark.org/docs/wsug_html_chunked/),  

 

1 

References to figures and sections are for the 6
th 

edition of  Computer Networks, A Top-down Approach, 

6
th 

ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.  



man pages (http://www.wireshark.org/docs/man-pages/), and a detailed FAQ 

(http://www.wireshark.org/faq.html), rich functionality that includes the capability to analyze 

hundreds of protocols, and a well-designed user interface. It operates in computers using Ethernet, 

serial (PPP and SLIP), 802.11 wireless LANs, and many other link-layer technologies (if the OS on 

which it's running allows Wireshark to do so).  

Getting Wireshark  

In order to run Wireshark, you will need to have access to a computer that supports both Wireshark 

and the libpcap or WinPCap packet capture library. The libpcap software will be installed for you, if 

it is not installed within your operating system, when you install Wireshark. See 

http://www.wireshark.org/download.html for a list of supported operating systems and download sites  

Download and install the Wireshark software (Skip this if Wireshark is already installed on your PC):  

 Go to http://www.wireshark.org/download.html and download and install the Wireshark binary 

for your computer. 

The Wireshark FAQ has a number of helpful hints and interesting tidbits of information, particularly 

if you have trouble installing or running Wireshark.  

Running Wireshark  

When you run the Wireshark program, you’ll get a startup screen, as shown below:  

 

Figure 2: Initial Wireshark Screen  



Take a look at the upper left hand side of the screen – you’ll see an “Interface list”.  This is the list of 

network interfaces on your computer.  Once you choose an interface, Wireshark will capture all 

packets on that interface.  In the example above, there is an Ethernet interface (Gigabit network 

Connection) and a wireless interface (“Microsoft”).  

If you click on one of these interfaces to start packet capture (i.e., for Wireshark to begin capturing all 

packets being sent to/from that interface), a screen like the one below will be displayed, showing 

information about the packets being captured.  Once you start packet capture, you can stop it by using 

the Capture pull down menu and selecting Stop.  

 

Figure 3: Wireshark Graphical User Interface, during packet capture and analysis  

The Wireshark interface has five major components:  

 

 The command menus are standard pulldown menus located at the top of the window.  

Of interest to us now are the File and Capture menus.  The File menu allows you to save 

captured packet data or open a file containing previously captured packet data, and exit 

the Wireshark application.  The Capture menu allows you to begin packet capture.  



 The packet-listing window displays a one-line summary for each packet captured, 

including the packet number (assigned by Wireshark; this is not a packet number contained 

in any protocol’s header), the time at which the packet was captured, the packet’s source 

and destination addresses, the protocol type, and protocol-specific information contained in 

the packet. The packet listing can be sorted according to any of these categories by clicking 

on a column name.  The protocol type field lists the highest-level protocol that sent or 

received this packet, i.e., the protocol that is the source or ultimate sink for this packet.  

 The packet-header details window provides details about the packet selected 

(highlighted) in the packet-listing window.  (To select a packet in the packet-listing 

window, place the cursor over the packet’s one-line summary in the packet-listing window 

and click with the left mouse button.).  These details include information about the 

Ethernet frame (assuming the packet was sent/received over an Ethernet interface) and IP 

datagram that contains this packet. The amount of Ethernet and IP-layer detail displayed 

can be expanded or minimized by clicking on the plus minus boxes to the left of the 

Ethernet frame or IP datagram line in the packet details window.  If the packet has been 

carried over TCP or UDP, TCP or UDP details will also be displayed, which can similarly 

be expanded or minimized.  Finally, details about the highest-level protocol that sent or 

received this packet are also provided.  

 The packet-contents window displays the entire contents of the captured frame, in both 

ASCII and hexadecimal format.  

 Towards the top of the Wireshark graphical user interface, is the packet display filter 

field, into which a protocol name or other information can be entered in order to filter 

the information displayed in the packet-listing window (and hence the packet-header 

and packet-contents windows).  In the example below, we’ll use the packet-display filter 

field to have Wireshark hide (not display) packets except those that correspond to HTTP 

messages.  

Taking Wireshark for a Test Run  

The best way to learn about any new piece of software is to try it out!  We’ll assume that your 

computer is connected to the Internet via a wired Ethernet interface. Indeed, I recommend that you do 

this first lab on a computer that has a wired Ethernet connection, rather than just a wireless 

connection. Do the following  

 

1. Start up your favorite web browser, which will display your selected homepage.  

 
2. Start up the Wireshark software.  You will initially see a window similar to that shown 

in Figure 2. Wireshark has not yet begun capturing packets.  

 

3. To begin packet capture, select the Capture pull down menu and select Interfaces. This 

will cause the “Wireshark: Capture Interfaces” window to be displayed, as shown in 

Figure 4.  



 

Figure 4: Wireshark Capture Interface Window  

4. You’ll see a list of the interfaces on your computer as well as a count of the packets 

that have been observed on that interface so far.  Click on Start for the interface on 

which you want to begin packet capture (in the case, the Gigabit network 

Connection). Packet capture will now begin -Wireshark is now capturing all packets 

being sent/received from/by your computer!  

 

5. Once you begin packet capture, a window similar to that shown in Figure 3 will appear.  

This window shows the packets being captured.  By selecting Capture pulldown menu 

and selecting Stop, you can stop packet capture.  But don’t stop packet capture yet. 

Let’s capture some interesting packets first.  To do so, we’ll need to generate some 

network traffic.  Let’s do so using a web browser, which will use the HTTP protocol 

that we will study in detail in class to download content from a website.  

 

6. While Wireshark is running, enter the URL:  

7. After your browser has displayed the INTRO-wireshark-file1.html page (it is a 

simple one line of congratulations), stop Wireshark packet capture by selecting stop 

in the Wireshark capture window.  The main Wireshark window should now look 

similar to Figure 3. You now have live packet data that contains all protocol 

messages exchanged between your computer and other network entities!  The HTTP 

message exchanges with the gaia.cs.umass.edu web server should appear somewhere 

in the listing of packets captured.  But there will be many other types of packets 

displayed as well (see, e.g., the many different protocol types shown in the Protocol 

column in Figure 3).  Even though the only action you took was to download a web 

page, there were evidently many other protocols running on your computer that are 

unseen by the user.  We’ll learn much more about these protocols as we progress 

through the text!  For now, you should just be aware that there is often much more 

going on than “meet’s the eye”!  

 

and have that page displayed in your browser. In order to display this page, your 

browser will contact the HTTP server at gaia.cs.umass.edu and exchange HTTP 

messages with the server in order to download this page, as discussed in section 2.2 of 

the text.  The Ethernet frames containing these HTTP messages (as well as all other 

frames passing through your Ethernet adapter) will be captured by Wireshark.  

 

 

http://gaia.cs.umass.edu/wireshark-labs/INTRO-wireshark-file1.html  

 



8. Type in “http” (without the quotes, and in lower case – all protocol names are in lower 

case in Wireshark) into the display filter specification window at the top of the main 

Wireshark window.  Then select Apply (to the right of where you entered “http”).  This 

will cause only HTTP message to be displayed in the packet-listing window.   

9. Find the HTTP GET message that was sent from your computer to the gaia.cs.umass.edu 

HTTP server. (Look for an HTTP GET message in the “listing of captured packets” 

portion of the Wireshark window (see Figure 3) that shows “GET” followed by the 

gaia.cs.umass.edu URL that you entered. When you select the HTTP GET message, the 

Ethernet frame, IP datagram, TCP segment, and HTTP message header information will 

be displayed in the packet-header window
2

. By clicking on ‘+’ and ‘-‘ right-pointing and 

down-pointing arrowheads to the left side of the packet details window, minimize the 

amount of Frame, Ethernet, Internet Protocol, and Transmission Control Protocol 

information displayed. Maximize the amount information displayed about the HTTP 

protocol.  Your Wireshark display should now look roughly as shown in Figure 5. (Note, 

in particular, the minimized amount of protocol information for all protocols except 

HTTP, and the maximized amount of protocol information for HTTP in the packet-header 

window).  

10. Exit Wireshark  

 

2 

Recall that the HTTP GET message that is sent to the gaia.cs.umass.edu web server is contained 

within a TCP segment, which is contained (encapsulated) in an IP datagram, which is encapsulated in 
an Ethernet frame. If this process of encapsulation isn’t quite clear yet, review section 1.5 in the text  



 

Figure 5: Wireshark window after step 9  



Questions for 1st part of Lab1: 

The goal of this first part of lab was primarily to introduce you to Wireshark. The following 

questions will demonstrate that you’ve been able to get Wireshark up and running, and have 

explored some of its capabilities. Answer the following questions, based on your Wireshark 

experimentation:  

1. List 3 different protocols that appear in the protocol column in the unfiltered packet-listing 

window in step 7 above.  

2. How long did it take from when the HTTP GET message was sent until the HTTP OK reply 

was received? (By default, the value of the Time column in the packet-listing window is the 

amount of time, in seconds, since Wireshark tracing began.  To display the Time field in 

time-of-day format, select the Wireshark View pull down menu, then select Time Display 

Format, then select Time-of-day.)  

3. What is the Internet address of the gaia.cs.umass.edu (also known as wwwnet.cs.umass.edu)?  

What is the Internet address of your computer?  

4. Print the two HTTP messages (GET and OK) referred to in question 2 above. To do so, select 

Print from the Wireshark File command menu, and select the “Selected Packet Only” and 

“Print as displayed” radial buttons, and then click OK. (You can skip this step if demis 

allow) 



 
 

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved  

 Lab1b-Wireshark Lab: 
HTTP 

Having gotten our feet wet with the Wireshark packet sniffer in the first part of introductory lab, we’re 

now ready to use Wireshark to investigate protocols in operation. In this lab, we’ll explore several 

aspects of the HTTP protocol: the basic GET/response interaction, HTTP message formats, 

retrieving large HTML files, retrieving HTML files with embedded objects, and HTTP 

authentication and security. Before beginning these labs, you might want to review Section 2.2 of 

the text.
1 

 

Supplement to Computer Networking: A Top-Down 

Approach, 6
th 

ed., J.F. Kurose and K.W. Ross  

“Tell me and I forget. Show me and I remember. Involve me and I 
understand.” Chinese proverb  

 

1. The Basic HTTP GET/response interaction  

Let’s begin our exploration of HTTP by downloading a very simple HTML file -one that is very short, 

and contains no embedded objects.  Do the following:  

1. Start up your web browser.  

2. Start up the Wireshark packet sniffer, as described in the Introductory lab (but don’t 

yet begin packet capture).  Enter “http” (just the letters, not the quotation marks) in 

the display-filter-specification window, so that only captured HTTP messages will be 

displayed later in the packet-listing window.  (We’re only interested in the HTTP 

protocol here, and don’t want to see the clutter of all captured packets).    

3. Wait a bit more than one minute (we’ll see why shortly), and then begin Wireshark 

packet capture.  

4. Enter the following to your browser  

 http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file1.html  

Your browser should display the very simple, one-line HTML file.  

5. Stop Wireshark packet capture.  

 

 
1 

References to figures and sections are for the 6
th 

edition of our text, Computer Networks, A Top-down 

Approach, 6
th 

ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.  



Your Wireshark window should look similar to the window shown in Figure 1.  If you are unable 

to run Wireshark on a live network connection, you can download a packet trace that was created 

when the steps above were followed.
2 

 

 

Figure 1: Wireshark Display after http://gaia.cs.umass.edu/wireshark-labs/ HTTPwireshark-

file1.html has been retrieved by your browser  

The example in Figure 1 shows in the packet-listing window that two HTTP messages were 

captured: the GET message (from your browser to the gaia.cs.umass.edu web server) and the 

response message from the server to your browser. Note that there could be additional intermediate 

messages because of the presence of proxy server at Wits.  The packet-contents window shows details 

of the selected message (in this case the HTTP OK message, which is highlighted in the packet-listing 

window).  Recall that since the HTTP message was carried inside a TCP segment, which was carried 

inside an IP datagram, which was carried within an Ethernet frame, Wireshark displays the Frame, 

Ethernet, IP, and TCP packet information as well.  We want to minimize the amount of non-HTTP 

data displayed (we’re interested in HTTP here, and will be investigating these other protocols is later 

labs), so make sure the boxes at the far left of the Frame, Ethernet, IP and TCP information have a 

plus sign or a right-pointing triangle (which means there is hidden, undisplayed information), and the 

HTTP line has a minus sign or a down-pointing triangle (which means that all information about the 

HTTP message is displayed).  

 

 
2 

Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file http-

ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the book author’s computers, 

while performing the steps indicated in the Wireshark lab. Once you have downloaded the trace, you can load it into 

Wireshark and view the trace using the File pull down menu, choosing Open, and then selecting the http-ethereal-trace-

1 trace file. The resulting display should look similar to Figure 1. (The Wireshark user interface displays just a bit 

differently on different operating systems, and in different versions of Wireshark).  



 

 

(Note: You should ignore any HTTP GET and response for favicon.ico. If you see a reference to this 

file, it is your browser automatically asking the server if it (the server) has a small icon file that should be 
displayed next to the displayed URL in your browser.  We’ll ignore references to this pesky file in this lab.).  

By looking at the information in the HTTP GET and response messages, answer the following 
questions.  When answering the following questions, you should print out the GET  and response 

messages (see the introductory Wireshark lab for an explanation of how to do this) and indicate 

where in the message you’ve found the information that answers the following questions. When 

you hand in your assignment, annotate the output so that it’s clear where in the output you’re 

getting the information for your answer (e.g. markup paper copies with a pen, or annotate 

electronic copies with text in a colored font).  

1. Is your browser running HTTP version 1.0 or 1.1?  What version of HTTP is the server 

running?  

2. What languages (if any) does your browser indicate that it can accept to the server?  

3. What is the IP address of your computer?  Of the gaia.cs.umass.edu server?  

4. What is the status code returned from the server to your browser?  

5. When was the HTML file that you are retrieving last modified at the server?  

6. How many bytes of content are being returned to your browser?  

7. By inspecting the raw data in the packet content window, do you see any headers within 

the data that are not displayed in the packet-listing window?  If so, name one.  

In your answer to question 5 above, you might have been surprised to find that the document you 

just retrieved was last modified within a minute before you downloaded the document. That’s 

because (for this particular file), the gaia.cs.umass.edu server is setting the file’s last-modified time to 

be the current time, and is doing so once per minute. Thus, if you wait a minute between accesses, 

the file will appear to have been recently modified, and hence your browser will download a “new” 

copy of the document.  

2. The HTTP CONDITIONAL GET/response interaction  

Recall from Section 2.2.6 of the text, that most web browsers perform object caching and thus perform 

a conditional GET when retrieving an HTTP object. Before performing the steps below, make sure 

your browser’s cache is empty. (To do this under Firefox, select Tools->Clear Recent History and 

check the Cache box, or for Internet Explorer, select Tools->Internet Options->Delete File; these 

actions will remove cached files from your browser’s cache.) Now do the following:  

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed 

above.  

 Start up the Wireshark packet sniffer  

 Enter the following URL into your browser 

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file2.html  

Your browser should display a very simple five-line HTML file. 

 

 



 

 

 

 

 

 Quickly enter the same URL into your browser again (or simply select the refresh button on 

your browser)  

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so 

that only captured HTTP messages will be displayed later in the packet-listing window.   

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-

ethereal-trace-2 packet trace to answer the questions below; see footnote 1. This trace file was 

gathered while performing the steps above on one of the book author’s computers.)  

Answer the following questions:  

8. Inspect the contents of the first HTTP GET request from your browser to the server.  Do 

you see an “IF-MODIFIED-SINCE” line in the HTTP GET?  

9. Inspect the contents of the server response. Did the server explicitly return the contents 

of the file?   How can you tell?  

10. Now inspect the contents of the second HTTP GET request from your browser to the 

server.  Do you see an “IF-MODIFIED-SINCE:” line in the HTTP GET? If so, what 

information follows the “IF-MODIFIED-SINCE:” header?  

11. What is the HTTP status code and phrase returned from the server in response to this 

second HTTP GET?  Did the server explicitly return the contents of the file? Explain.  

3. Retrieving Long Documents  

In our examples thus far, the documents retrieved have been simple and short HTML files. Let’s 

next see what happens when we download a long HTML file.  Do the following:  

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed 

above.  

 Start up the Wireshark packet sniffer  

 Enter the following URL into your browser  
http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file3.html  

Your browser should display the rather lengthy US Bill of Rights.  

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so 

that only captured HTTP messages will be displayed.  

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-

ethereal-trace-3 packet trace to answer the questions below; see footnote 1. This trace file 

was gathered while performing the steps above on one of the book author’s computers.)  

In the packet-listing window, you should see your HTTP GET message followed by a multiple-

packet TCP response (refer to the TCP details of the HTTP response packets in case you see only 

a single HTTP response packet),  to your HTTP GET request.  This multiple-packet response 

deserves a bit of explanation.  Recall from Section 2.2 (see Figure 2.9 in the text) that the HTTP 

response message consists of a status line, followed by header lines, followed by a blank line, 

followed by the entity body.  In the case of our HTTP GET, the  



 

 

 

entity body in the response is the entire requested HTML file.  In our case here, the HTML file is 

rather long, and at 4500 bytes is too large to fit in one TCP packet.  The single HTTP response 

message is thus broken into several pieces by TCP, with each piece being contained within a separate 

TCP segment (see Figure 1.24 in the text). In recent versions of Wireshark, Wireshark indicates each 

TCP segment as a separate packet, and the fact that the single HTTP response was fragmented across 

multiple TCP packets is indicated by the “TCP segment of a reassembled PDU” in the Info column 

of the Wireshark display.  Earlier versions of Wireshark used  the “Continuation” phrase to indicated 

that the entire content of an HTTP message was broken across multiple TCP segments..  We stress 

here that there is no “Continuation” message in HTTP!  

Answer the following questions:  

12. How many HTTP GET request messages did your browser send? Which packet number 

in the trace contains the GET message for the Bill or Rights?  

13. Which packet number in the trace contains the status code and phrase associated with 

the response to the HTTP GET request?  

14. What is the status code and phrase in the response?  

15. How many data-containing TCP segments were needed to carry the single HTTP 

response and the text of the Bill of Rights?  

4. HTML Documents with Embedded Objects  

Now that we’ve seen how Wireshark displays the captured packet traffic for large HTML files, we can 

look at what happens when your browser downloads a file with embedded objects, i.e., a file that 

includes other objects (in the example below, image files) that are stored on another server(s).  

Do the following:  

 Start up your web browser, and make sure your browser’s cache is cleared, as discussed 

above.  

 Start up the Wireshark packet sniffer  

 Enter the following URL into your browser  

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file4.html  

Your browser should display a short HTML file with two images. These two images are 

referenced in the base HTML file.  That is, the images themselves are not contained in the 

HTML; instead the URLs for the images are contained in the downloaded HTML file. As 

discussed in the textbook, your browser will have to retrieve these logos from the indicated 

web sites.  The book publisher’s logo is retrieved from the sweb site.  The image of the cover 

for book’s 5
th 

edition is stored at the manic.cs.umass.edu server.  

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so 

that only captured HTTP messages will be displayed.  

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-

ethereal-trace-4 packet trace to answer the questions below; see  



 

 

 

 

footnote 2. This trace file was gathered while performing the steps above on one  

of the author’s computers.)  

Answer the following questions:  

5 HTTP Authentication  

Finally, let’s try visiting a web site that is password-protected and examine the sequence of HTTP 

message exchanged for such a site.  The URL http://gaia.cs.umass.edu/wireshark-

labs/protected_pages/HTTP-wireshark-file5.html is password protected.  The username is 

“wireshark-students” (without the quotes), and the password is “network” (again, without the quotes).  

So let’s access this “secure” password-protected site.  Do the following:  

16. How many HTTP GET request messages did your browser send?  To which Internet 

addresses were these GET requests sent?  

17. Can you tell whether your browser downloaded the two images serially, or whether they 

were downloaded from the two web sites in parallel?  Explain.  

Now let’s examine the Wireshark output.  You might want to first read up on HTTP authentication 

by reviewing the easy-to-read material on “HTTP Access Authentication Framework” at 

http://frontier.userland.com/stories/storyReader$2159  

Answer the following questions:  

18. What is the server’s response (status code and phrase) in response to the initial HTTP 

GET message from your browser?  

19. When your browser’s sends the HTTP GET message for the second time, what new 

field is included in the HTTP GET message?  

http://gaia.cs.umass.edu/wireshark-labs/protected_pages/HTTP-wireshark- 

file5.html  

Type the requested user name and password into the pop up box.  

 Stop Wireshark packet capture, and enter “http” in the display-filter-specification window, so 

that only captured HTTP messages will be displayed later in the packet-listing window.   

 (Note: If you are unable to run Wireshark on a live network connection, you can use the http-

ethereal-trace-5 packet trace to answer the questions below; see footnote 2. This trace file 

was gathered while performing the steps above on one of the author’s computers.)  

 Make sure your browser’s cache is cleared, as discussed above, and close down your 

browser.  Then, start up your browser  

 Start up the Wireshark packet sniffer  

 Enter the following URL into your browser  

The username (wireshark-students) and password (network) that you entered are encoded in the 

string of characters (d2lyZXNoYXJrLXN0dWRlbnRzOm5ldHdvcms=) following the 

“Authorization:  Basic” header in the client’s HTTP GET message.  While it may  

appear that your username and password are encrypted, they are simply encoded in a  



format known as Base64 format. The username and password are not encrypted!  To see this, go to  

http://www.motobit.com/util/base64-decoder-encoder.asp and enter the base64-encoded string 

d2lyZXNoYXJrLXN0dWRlbnRz and decode.  Voila! You have translated from Base64 encoding to 

ASCII encoding, and thus should see your username!  To view the password, enter the remainder of the 

string Om5ldHdvcms= and press decode.  Since anyone can download a tool like Wireshark and sniff 

packets (not just their own) passing by their network adaptor, and anyone can translate from Base64 to 

ASCII (you just did it!), it should be clear to you that simple passwords on WWW sites are not secure 

unless additional measures are taken.  

Fear not! As we will see in Chapter 8, there are ways to make WWW access more secure.  However, 

we’ll clearly need something that goes beyond the basic HTTP authentication framework!  


