
ELEN 4017

Network Fundamentals

Lecture 9

Purpose of lecture

Chapter2: Application Layer

 Web and HTTP

Web and HTTP

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java applet,

audio file,…

 Web page consists of base HTML-file which

includes several referenced objects

 Each object is addressable by a URL

 Example URL:

 www.someschool.edu/someDept/pic.gif

host name path name

HTML - Source

Hyperlinks

Referenced objects

Retrieving objects

a.html

b.jpg

c.avi

Internet

HTTP overview

HTTP: hypertext transfer

protocol

 Web’s application layer

protocol

 client/server model

 client: browser that

requests, receives,

“displays” Web objects

 server: Web server

sends objects in

response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP overview (continued)

Uses TCP:

 client initiates TCP

connection (creates socket)

to server, port 80

 server accepts TCP

connection from client

 HTTP messages

(application-layer protocol

messages) exchanged

between browser (HTTP

client) and Web server

(HTTP server)

 TCP connection closed

HTTP is “stateless”

 server maintains no

information about past

client requests

Protocols that maintain

“state” are complex!

 past history (state) must

be maintained

 if server/client crashes,

their views of “state” may

be inconsistent, must be

reconciled

aside

HTTP connections

Nonpersistent HTTP

 At most one object is

sent over a TCP

connection.

Persistent HTTP

 Multiple objects can be

sent over single TCP

connection between

client and server.

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP

connection to HTTP server

(process) at

www.someSchool.edu on port

80

2. HTTP client sends HTTP

request message (containing

URL) into TCP connection

socket. Message indicates

that client wants object

someDepartment/home.inde

x

1b. HTTP server at host

www.someSchool.edu

waiting for TCP connection

at port 80. “accepts”

connection, notifying client

3. HTTP server receives

request message, forms

response message

containing requested object,

and sends message into its

socket time

(contains text,

references to 10

jpeg images)

Nonpersistent HTTP (cont.)

5. HTTP client receives response

message containing html file,

displays html. Parsing html

file, finds 10 referenced jpeg

objects

6. Steps 1-5 repeated for each

of 10 jpeg objects

4. HTTP server closes TCP

connection.

time

Non-Persistent HTTP: Response time

Definition of RTT: time for a

small packet to travel from

client to server and back.

Response time:

 one RTT to initiate TCP

connection

 one RTT for HTTP

request and first few bytes

of HTTP response to

return

 file transmission time

total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP

connection

 browsers often open

parallel TCP connections

to fetch referenced objects

Persistent HTTP

 server leaves connection

open after sending

response

 subsequent HTTP

messages between same

client/server sent over

open connection

 client sends requests as

soon as it encounters a

referenced object

 as little as one RTT for all

the referenced objects

Pipelining

 Back to back requests for objects.

 Applet – HTTP Delay Estimation

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

HTTP request message: general format

Uploading form input

Post method:

 Web page often

includes form input

 Input is uploaded to

server in entity body

URL method:

 Uses GET method

 Input is uploaded in

URL field of request

line:

 www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0

 GET

 POST

 HEAD

 asks server to leave

requested object out of

response

HTTP/1.1

 GET, POST, HEAD

 PUT

 uploads file in entity body

to path specified in URL

field

 DELETE

 deletes file specified in

the URL field

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP response status codes

200 OK

 request succeeded, requested object later in this

message

301 Moved Permanently

 requested object moved, new location specified later in

this message (Location:)

400 Bad Request

 request message not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

 Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

 GET /~ross/ HTTP/1.1

Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)

GET request to HTTP server

3. Look at response message sent by HTTP server!

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line of

HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

Example:

 Susan always access

Internet always from PC

 visits specific e-

commerce site for first

time

 when initial HTTP

requests arrives at site,

site creates:

 unique ID

 entry in backend

database for ID

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734

usual http request msg Amazon server
creates ID

1678 for user create
 entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734

amazon 1678

backend
database

Cookies (continued)

What cookies can bring:

 authorization

 shopping carts

 recommendations

 user session state

(Web e-mail)

Cookies and privacy:

 cookies permit sites to

learn a lot about you

 you may supply name

and e-mail to sites

aside

How to keep “state”:

 protocol endpoints: maintain state

at sender/receiver over multiple

transactions

 cookies: http messages carry state

Read about

3rd party cookies!

Other means of managing

state

 Hidden form fields
 Hidden fields are set into the response message by

the server.

 This value is “echoed” by the client for the duration of

that session.

 Url based (query strings)
 Session id is passed in the URL to the server e.g.

 http://dept.ee.wits.ac.za/getMarks.aspx?uid=00612345

http://dept.ee.wits.ac.za/getMarks.aspx?uid=00612345

