
ELEN 4017

Network Fundamentals Lecture 6 & 7

Purpose of lecture

- Continuation of roadmap for course
- Kurose chapter 1

Outline

- Networks under attack
- History of networking and the Internet

Network Security

- The field of network security is about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network" ©
 - Internet protocol designers playing "catch-up"
 - Security considerations in all layers!

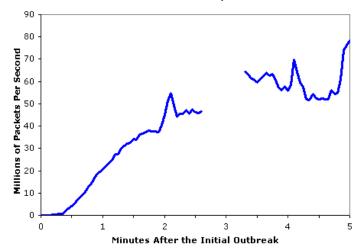
Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.
- Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- Malware is often self-replicating: from an infected host, seeks entry into other hosts

Bad guys can put malware into hosts via Internet

Trojan horse

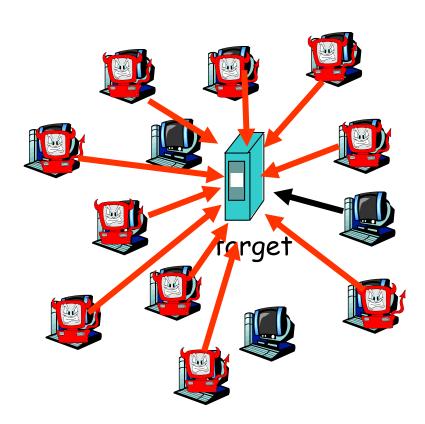
- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)


Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

Worm:

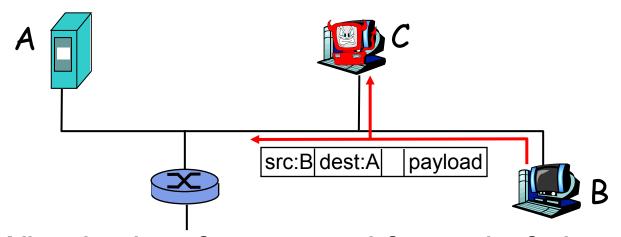
- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users


Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

- Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- select target
- break into hosts around the network (see botnet)
- send packets toward target from compromised hosts

Bad guys can attack servers and network infrastructure

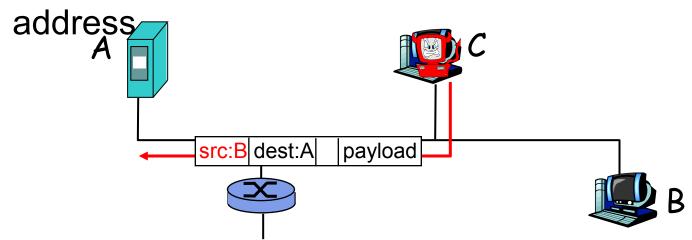


- Vulnerability attack
 - Exploit a vulnerability in a specific OS or application.
 - Dropping a SQL database.
 - Connection flooding
 - Establish a large number of open TCP connections.
 - Server runs out of resources.
 - Bandwidth flooding
 - Deluge of packets, overwhelm the access link.
 Prevents legitimate packets from reaching the server.

The bad guys can sniff packets

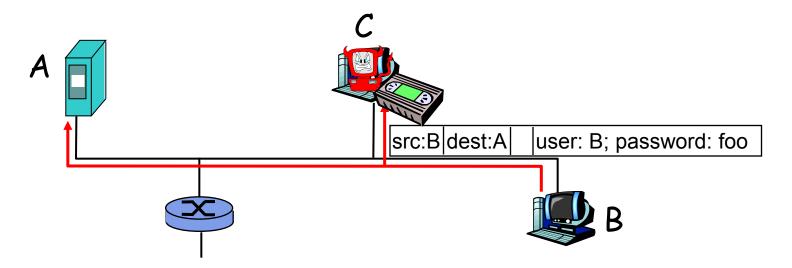
Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by



 Wireshark software used for end-of-chapter labs is a (free) packet-sniffer

The bad guys can use false source addresses


IP spoofing: send packet with false source

The bad guys can record and playback

- record-and-playback: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view

Internet History

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Purpose of lecture

- Future of the Internet
- Application Layer
 - Application trends

Application trends

- Applications are the reason that communications exist.
- Majority of software development is targeted at application layer.

• Trends:

- 1980's text email, remote access, file transfers
- 1990's World Wide Web (surfing, searching, Ecommerce)
- 2000's P2P file sharing, social networking, video and multimedia, Internet telephony

₽ ramnath@Volt:~			
PINE 4.64	MAIN MENU		Folder: INBOX No Messages ^
?	HELP	_	Get help using Pine
С	COMPOSE MESSAGE	-	Compose and send a message
I	MESSAGE INDEX	-	View messages in current folder
L	FOLDER LIST	_	Select a folder to view
A	ADDRESS BOOK	_	Update address book
ន	SETUP	_	Configure Pine Options
Q	QUIT	-	Leave the Pine program
Copyright	1989-2005. PINE is	a tr	ademark of the University of Washington.
? Help O OTHER CMDS	P Prevo		R RelNotes K KBLock

Remote access

Screencast

1990s – Birth of web

- Web browsing (surfing)
- HTTP/HTML defined the semantics of how web pages could be referenced and linked to other pages.
- Initial versions were geared towards basic static content.
- Retro fitted name Web 1.0

XML Schema

Tools · Usage · Resources · Specifications and Development

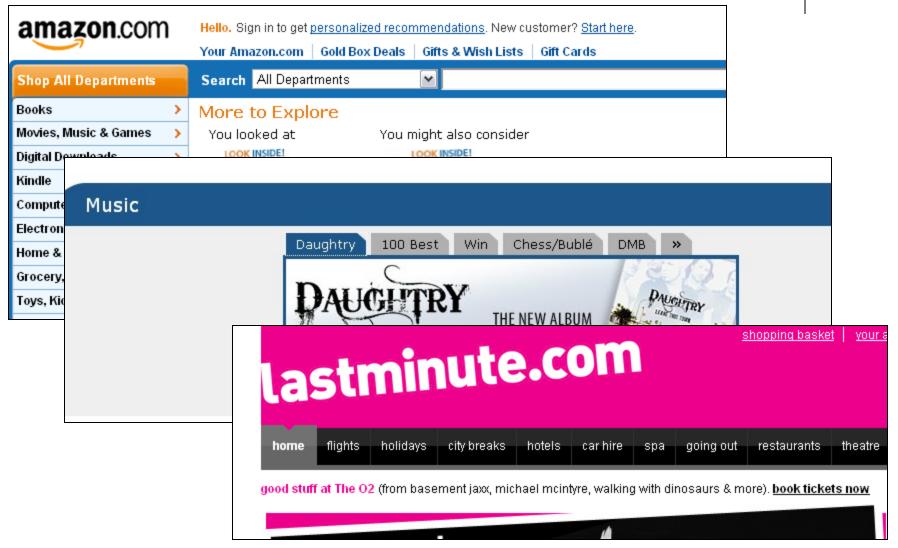
XML Schemas express shared vocabularies and allow machines to carry out rules made by people. They provide a means for defining the structure, detail. XML Schema was approved as a W3C Recommendation on 2 May 2001 and a second edition incorporating many errata was published on 2

The XML Schema Working Group, part of the XML Activity, is responsible for the W3C's work on this topic -- for details see the Working Group's cha XML Schema Interest Group, a forum for the discussion of technical issues relating to the development of XML Schema. It also has a charter.

See also: Robin Cover's index of XML Schema materials.

XML Schema 1.1 Status

Ref: http://www.w3.org/XML/Schema

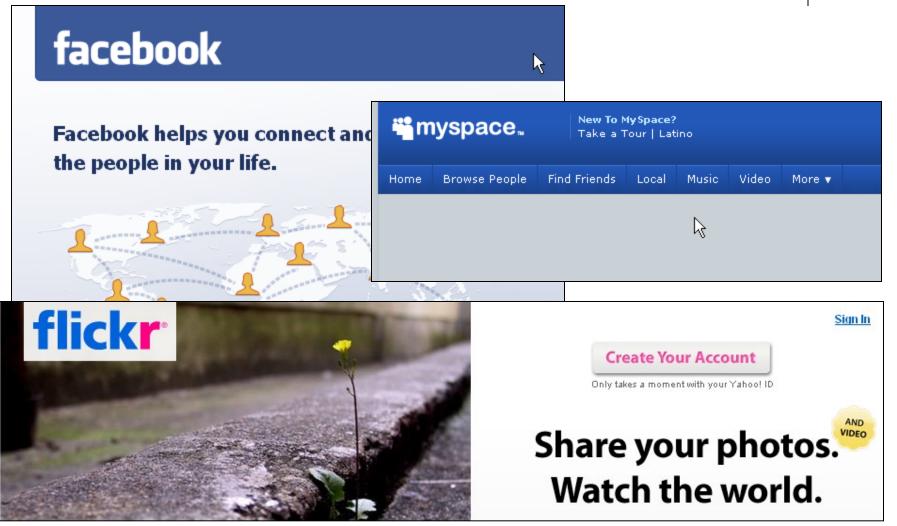


Public authoring

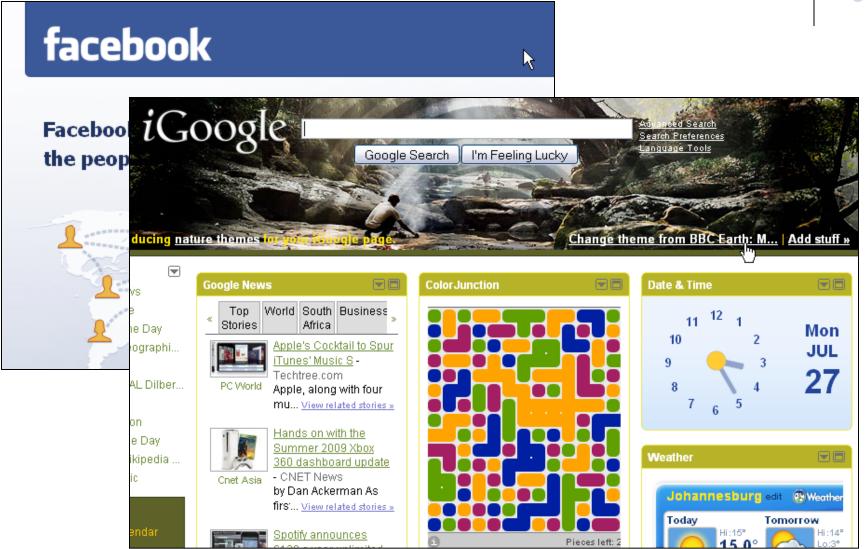
- Change in publishing model.
- Collaborative knowledge sharing
- Wikipedia
- Twitter

Webmail / IRC

- Free internet email is hugely successful.
- Resurgence in Internet Relay Chat (relying on presence information of contacts)


2000s

- Burst of dotcom bubble
- Innovative applications entering space.



Multimedia

- YouTube
- Hulu

File sharing / VoIP/ P2P

- Napster
- BitTorrent
- Skype

Web 2.0

- What is it?
- What other applications?

Future of the Internet

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

Watch this to learn about how the web is evolving