
ELEN 4017

Network Fundamentals

Lecture 25 & 26

Purpose of lecture

Chapter 4: Network Layer

 Routing algorithms

 Link State Routing Algorithm

Terminology

 Default router/first hop router: - this is the

router to which a host is connected.

 Source router is the first-hop router

connected to the source host.

 Destination router is the first-hop router

connected to the destination host.

 The purpose of a routing algorithm is to find a

‘good’ path from source to destination router.

Graph theory

 A graph is used to formulate routing

problems.

 Graph G = (N,E)

 N is the set of nodes

 E is the set of edges, where each edge is a pair

of nodes from N.

 For network layer routing, the nodes are the

routers and the edges are the physical

links connecting the routers.

Definitions

 N = {u,v,w,x,y,z}

 E = {(u,x), (u,v), …}

 Each edge has a cost
associated with it, denoted
by c(x,y)

 If the pair (x,y) does not
belong to E, then the cost is
given as infinite c(x,y) =
∞

 Graphs are un-directed
c(x,y) = c(y,x)

 Node y is said to be a
neighbour of node x if E
contains (x,y)

Least cost path

 A goal of a routing algorithm is to find a least-

cost path.

 A path in a graph G = (N,E) is a sequence of

nodes (x1,x2,…,xp) such that the pairs

(x1,x2), (x2,x3), … (xp-1,xp) are edges in E.

 The cost of the path is c(x1,x2) + c(x2,x3) +

…

 What is the least cost path

from u to w ?

 How did you calculate it ?

Your calculation is an example of a

centralized (global) routing algorithm

all calculations are done in one place

and has access to the state of entire

system.

Classifying algorithms

 Global vs decentralized

 Static vs dynamic

 Load sensitive vs insensitive

Global vs Decentralized

 Global: computes least cost path using complete,
global knowledge of the network. These are referred
to as link-state algorithms since the state of all
links must be known.

 Decentralized: calculation done iteratively and
distributed.
 No node has complete information about all network links.

 Each node begins with knowing the cost of its direct links.

 Through an iterative process of calculation and information
exchange with its neigbouring nodes, a node gradually
calculates the least cost path.

 One class of decentralized algorithms are the distance
vector (DV) algorithms.

Static vs Dynamic

 Static refers to cases where routes don’t

change at all, or very infrequently due to

human configuration.

 Dynamic refers to the case where routes are

updated based on network topology and load.

It can run periodically on in response to an

event.

Load sensitive

 Load sensitive refers to the ability to adjust

the link costs based on current congestion

level.

 There have been attempts to implement load

sensitive algorithms, but they are

problematic.

 Todays Internet algorithms are not load

sensitive.

Purpose of lecture

Chapter 4: Network Layer

 Routing algorithms

 Link State Routing Algorithm

Dijkstra’s algorithm

 This algorithm requires states of all other nodes to

be known.

 This is accomplished by having each node

broadcast link-state packets to all other nodes.

 We will consider Dijkstra’s algorithm:

 It is iterative.

 It has the property that after the kth iteration, the least

cost paths are known to k destination nodes.

 Among the least-cost paths to all destination nodes, these

k paths will have the k smallest costs.

Dijkstra’s algorithm

 D(v) : cost of the least-cost path from the

source node to destination node v as of this

iteration of the algorithm

 p(v) : previous node (neighbour of v) along

the current least-cost path from the source to

v.

 N’ : subset of nodes.

 v is in N’ if the least-cost path from the source to v

is definitely known.

Dijkstra’s algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5

Dijkstra’s algorithm example
Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)

∞
2,x

D(z),p(z)

∞
∞

4,y

4,y

4,y

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5

 Initialize values from u to neighbours
v,x,w

 Look at nodes not in N’ and add the
least cost. In this it is x.

 Recompute all costs.

 In case of multiple paths with same
cost, choose arbitrarily.

 When algorithm terminates, for each
node we have the predecessor
along least cost path.

Applet

 http://www.unf.edu/~wkloster/foundations/Dijk

straApplet/DijkstraApplet.htm

http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm

