
ELEN 4017

Network Fundamentals

Lecture 25 & 26

Purpose of lecture

Chapter 4: Network Layer

 Routing algorithms

 Link State Routing Algorithm

Terminology

 Default router/first hop router: - this is the

router to which a host is connected.

 Source router is the first-hop router

connected to the source host.

 Destination router is the first-hop router

connected to the destination host.

 The purpose of a routing algorithm is to find a

‘good’ path from source to destination router.

Graph theory

 A graph is used to formulate routing

problems.

 Graph G = (N,E)

 N is the set of nodes

 E is the set of edges, where each edge is a pair

of nodes from N.

 For network layer routing, the nodes are the

routers and the edges are the physical

links connecting the routers.

Definitions

 N = {u,v,w,x,y,z}

 E = {(u,x), (u,v), …}

 Each edge has a cost
associated with it, denoted
by c(x,y)

 If the pair (x,y) does not
belong to E, then the cost is
given as infinite  c(x,y) =
∞

 Graphs are un-directed 
c(x,y) = c(y,x)

 Node y is said to be a
neighbour of node x if E
contains (x,y)

Least cost path

 A goal of a routing algorithm is to find a least-

cost path.

 A path in a graph G = (N,E) is a sequence of

nodes (x1,x2,…,xp) such that the pairs

(x1,x2), (x2,x3), … (xp-1,xp) are edges in E.

 The cost of the path is c(x1,x2) + c(x2,x3) +

…

 What is the least cost path

from u to w ?

 How did you calculate it ?

Your calculation is an example of a

centralized (global) routing algorithm 

all calculations are done in one place

and has access to the state of entire

system.

Classifying algorithms

 Global vs decentralized

 Static vs dynamic

 Load sensitive vs insensitive

Global vs Decentralized

 Global: computes least cost path using complete,
global knowledge of the network. These are referred
to as link-state algorithms since the state of all
links must be known.

 Decentralized: calculation done iteratively and
distributed.
 No node has complete information about all network links.

 Each node begins with knowing the cost of its direct links.

 Through an iterative process of calculation and information
exchange with its neigbouring nodes, a node gradually
calculates the least cost path.

 One class of decentralized algorithms are the distance
vector (DV) algorithms.

Static vs Dynamic

 Static refers to cases where routes don’t

change at all, or very infrequently due to

human configuration.

 Dynamic refers to the case where routes are

updated based on network topology and load.

It can run periodically on in response to an

event.

Load sensitive

 Load sensitive refers to the ability to adjust

the link costs based on current congestion

level.

 There have been attempts to implement load

sensitive algorithms, but they are

problematic.

 Todays Internet algorithms are not load

sensitive.

Purpose of lecture

Chapter 4: Network Layer

 Routing algorithms

 Link State Routing Algorithm

Dijkstra’s algorithm

 This algorithm requires states of all other nodes to

be known.

 This is accomplished by having each node

broadcast link-state packets to all other nodes.

 We will consider Dijkstra’s algorithm:

 It is iterative.

 It has the property that after the kth iteration, the least

cost paths are known to k destination nodes.

 Among the least-cost paths to all destination nodes, these

k paths will have the k smallest costs.

Dijkstra’s algorithm

 D(v) : cost of the least-cost path from the

source node to destination node v as of this

iteration of the algorithm

 p(v) : previous node (neighbour of v) along

the current least-cost path from the source to

v.

 N’ : subset of nodes.

 v is in N’ if the least-cost path from the source to v

is definitely known.

Dijkstra’s algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5

Dijkstra’s algorithm example
Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)

∞
2,x

D(z),p(z)

∞
∞

4,y

4,y

4,y

u

y x

w v

z
2

2
1

3

1

1

2

5
3

5

 Initialize values from u to neighbours
v,x,w

 Look at nodes not in N’ and add the
least cost. In this it is x.

 Recompute all costs.

 In case of multiple paths with same
cost, choose arbitrarily.

 When algorithm terminates, for each
node we have the predecessor
along least cost path.

Applet

 http://www.unf.edu/~wkloster/foundations/Dijk

straApplet/DijkstraApplet.htm

http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm

