ELEN 4017

Network Fundamentals Lecture 21

Purpose of lecture

Chapter 4: Network Layer

- Recap
- Forwarding
- What's inside a router ?

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on rcving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams
 passing through it

Purpose of lecture

Chapter 4: Network Layer

- Recap
- Forwarding
- What's inside a router ?

Forwarding operation

- Consider a 32 bit destination address.
- If forwarding table had an entry for every possible address, this would require 4 billion entries.
- How can we then reduce this and achieve correct forwarding?

Ranges of addresses

Destination Address Range	Link
11001000000101110001000000000000 through 11001000000101110001011111111111	0
```11001000 00010111 0001100000000000 through 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 ~ 1 1 1 1 1 1 1 1 ~```	1
```110010000001011100011001 00000000 through 1 1 0 0 1 0 0 0 ~ 0 0 0 1 0 1 1 1 ~ 0 0 0 1 1 1 1 1 ~ 1 1 1 1 1 1 1 1 ~```	2
Otherwise	3

Prefix matching

- For this case, its not necessary to explicitly list each entry in the forwarding table, since we have groups.
- We could employ a prefix match.
- If the key in the prefix table is a prefix of the destination address, then it is matched and then the output interface is used.
- If not, the next key is checked.
- If no match occurs then a default interface is chosen.
- Can you see a problem with the algorithm ?

Prefix match	Link interface
110010000001011100010	0
110010000001011100011000	1
110010000001011100011	2
otherwise	3

Longest prefix matching rule

- Since there is a possibility of multiple matches, the rule is extended to match the longest prefix.
- Consider keys for interface 1 and 2.

Prefix match	Link interface
110010000001011100010	0
110010000001011100011000	1
110010000001011100011	2
Otherwise	3

An example from telecommunications

- Every subscriber has a unique address - as defined by ISDN numbering plan (E164 standard)
- Consider a Vodacom subscriber number 082123 4567.
- Within SA the number 821234567 is unique
- South Africa also has a country code assigned as 27
- Thus the globally unique number is 27821234567
- Incidentally, the 0 is just a trunk access code, indicating the destination dialled is national.

Configuring charging bands

- The aim is to configure different charging bands dependent on the destination dialed.
- Thus the following charging plan is required:

Destination	Price per min
Vodacom subscriber	1.00
Cell-C subscriber	1.50
MTN subscriber	2.00
Destination in U.K	10.00
Destination in U.S	15.00
Vodafone partner in U.K	7.00

- This charging can be done by using prefixes.
- The longest prefix matched is the chosen tariff.
- What is the flaw with the method below for SA ?

Destination	Prefix	Price per min
Vodacom subscriber	2782,2772	1.00
Cell-C subscriber	2784	1.50
MTN subscriber	2783	2.00
Destination in U.K	44	10.00
Destination in U.S	1	15.00
Vodafone partner in U.K	44171	$\mathbf{7 . 0 0}$
Other SA destinations	$\mathbf{2 7}$	$\mathbf{2 . 5 0}$

Tree indexing for performance

- The longest prefix search is also termed a prefixtree or best fit search.
- The reason for naming it prefix tree is that the data is often indexed in a prefix tree to make searching more efficient.

Destination	Prefix	Price per min
Other SA	27	2.50
Vodacom	2782	1.00
Vodacom discounted	2782123	0.80
U.K.	44	10.00
Vodafone partner	44171	7.00

