ELEN 4017

Network Fundamentals
Lecture 19

Purpose of lecture

Chapter 3: Transport Layer

e TCP seqguencing
o TCP handshaking

TCP sequencing :

e TCP views data as unstructured, but ordered stream of bytes.

Seqguence number of a segment is the byte stream number of the
first byte in that segment.

e Consider file of size 500 000 bytes. MSS = 1000 bytes.
e 1Stsegmenthasseq#=0
e 2"dsegment has seq # = 1000
e 3'dsegment has seg# = 2000 500 segments are created.
File
I
Data for 1st segment Data for 2nd segment
I
" 1| » l y
0 1 1,000 1,999 499,999

o L L

Figure 3.30 + Dividing file data into TCP segments

Acknowledgement numbers

e TCP is full duplex.

e Consider host A and B are sending data to
each other.

e Some data Is sent from B to A and this data
has a specific sequence number.

e The ack number used by Host A, is the
sequence number of the next byte Host A
IS expecting from Host B.

Examples

e Host A has received bytes 0-535 in 1%t

Data (bytes 0-535)

—

—
Ack (536)

segment successfully.

e The ack from A to B, is the next expected

byte number - 536

e0o
o0
O
Examples
Data (bytes 0-535)
A Data (bytes 900-1000) 5
-_— —- s 8

Ack (536)

e Host A has received bytes 0-535 in 15t segment and bytes 900-
1000 in 2"d segment.

e For some reason bytes 536-899 not received.

e The ack from A to B, is the next expected byte number - 536.

e TCP only acknowledges bytes up to the first missing byte in
the stream.

e Thus TCP is set to support cumulative acknowledgements.

e How could TCP support cumul. ack. but still not expect GBN
behaviour from receiver ?

What does TCP do with out of | sse
order segment ?

e TCP RFC does not impose any rules here. Its
up to the implementer to decide.

e Either it can be discarded, or buffered.

e Most implementations store it and use later
(similar to SR implementation).

Telnet example

User starts a telnet session (remote login at
console/command prompt)

Telnet behaviour is the following:

Each character entered by the user is echoed back
to the terminal.

Thus if you enter C, when you see displayed on the
screen, its been received by the server and has
been echoed back to the client.

Thus 1 RTT occurs before character is displayed on
screen.

3
Telnet example :
e After login the initial Hwé
sequence number of g

Host Ais 42 and Host B ..
is 79 (random
assignment). T Hostacks

receipt of 'C,
. “s ' .= echoes back 'C'
e The letter C is an ascii
character,and thusis 1 . «—

receipt of

byte N size. echoed 'C' '

e 3" message sent has
no data but specifies a
sequence number. Time Time

Purpose of lecture

Chapter 3: Transport Layer

e TCP seqguencing
e TCP handshaking

3 way handshake :

Client initiates connection by sending a Chnt st S hos
segment with no payload. SYN bit = 1. " -
Random initial sequence number is
chosen (client_isn).

Server receives TCP SYN, allocates Connection
buffers/variables and sends a request —
connection granted segment (SYNACK)
to Client. This also does not contain
any payload. 1o ~.— Connection
SYN=1, ACK field = client_isn+1. 7 ganed
Server chooses its own initial sequence Wit

number (server_isn)

Client receives SYNACK and allocates
buffers/variables.

Client then sends another segment to
acknowledge the SYNACK with
ACK=server_isn +1. SYN=0. This
segment can also contain client-to-
server data.

Time Time

Closing a TCP connection :

Client closes connection by
setting FIN=1

Server responds with ACK
for this segment.

Server then sends its own
shutdown segment with
FIN=1.

Finally the client
acknowledges this and
resources are de-allocated.

Why is FIN needed on both
sides?

What could be the purpose
of the TIMED_WAIT ?

Client Server

Close

Timed wait —

Closeg

Time Time

States of TCP client side .

Client application
initiates a TCP connection

CLOSED
Wait 30 seconds
Send SYN
TIME WATIT SYN_SENT
Receive FIN, Receive SYN & ACK,
send ACK send ACK
FIN_WAIT_2 ESTABLISHED
Send FIN
Receive ACK,
send nothing FIN _WAIT_ 1

Client application
initiates close connection

Figure 3.40 ¢ A typical sequence of TCP states visited by a client TCP

Figure 3.41

States of TCP server side

Server application

i creates a listen socket
Receive ACK, CLOSED

send nothing

LAST_ ACK LISTEN

Receive SYN

Send FIN send SYN & AK

CLOSE_WAIT SYN_RCVD

Receive FIN, Receive ACK,

send ACK send nothing
ESTABLISHED

¢ A typical sequence of TCP states visited by a server-side TCP

Accessing invalid ports

e \What is the behaviour if the client attempts to
establish a TCP connection with a server port
for which there is no ongoing socket.

e The server will then send a special TCP
segment with RST flag = 1.

e RST indicates "l don’t have a socket for that
segment. Please don't resend it’

Port scanning

e Consider a port scanner sends a TCP segment to server port 6789.
e 3 possible outcomes:

Server sends SYNACK - port is open and an app is
running.

TCP RST segment is received = Segment reached target
host but the host is not running an application on that port.
Indicates that the port is open (i.e. not blocked by a
firewall)

No response — SYN was blocked probably by a firewall.

SYN flood attack

e As we have seen, the server allocates variables and buffers
when a SYN is received (15t part of 3 way handshake).

e This fact has been abused to create Denial of Service (DoS)
attacks.

e DoS is an attempt to make a resource unavailable for its
Intended users.

e A Distributed DoS is where the attack originates from multiple
clients.

e With the SYN flood attack, a large number of SYN messages are
sent, without completing the handshake. Since the server
allocates resources at this time, a server can very quickly
become overloaded and will then deny connections from
legitimate users.

SYN cookies

e To prevent such attacks SYN cookies were introduced.

e With SYN cookies, when a SYN is received no resources are
assigned. Instead an initial TCP sequence number is created that
IS a function of source & destination IP addresses and ports, as
well as a secret number.

e This carefully crafted number is called the cookie.

e The server responds with the sequence number to the client.
Importantly the cookie is not stored.

e In the case of a legitimate client, an ACK is sent with the
sequence number = SYNACK +1

e The server can then re-run the algorithm to regenerate the
sequence number, and validate the session as legitimate.

e Of course, the next logical step in the attackers arsenal is to
complete the handshake.

