
ELEN 4017 

Network Fundamentals  

Lecture 19 



Purpose of lecture 

Chapter 3: Transport Layer 

 TCP sequencing 

 TCP handshaking  



TCP sequencing 

 TCP views data as unstructured, but ordered stream of bytes.  

 Sequence number of a segment is the byte stream number of the 
first byte in that segment. 

 Consider file of size 500 000 bytes. MSS = 1000 bytes. 

 1st segment has seq # = 0 

 2nd segment has seq # = 1000 

 3rd segment has seq# = 2000 …. 500 segments are created. 



Acknowledgement numbers 

 TCP is full duplex.  

 Consider host A and B are sending data to 

each other.  

 Some data is sent from B to A and this data 

has a specific sequence number. 

 The ack number used by Host A, is the 

sequence number of the next byte Host A 

is expecting from Host B.  

 



Examples 

 Host A has received bytes 0-535 in 1st 

segment successfully. 

 The ack from A to B, is the next expected 

byte number  536 

B A 

Data (bytes 0-535) 

Ack (536) 



Examples 

 Host A has received bytes 0-535 in 1st segment and bytes 900-
1000 in 2nd segment. 

 For some reason bytes 536-899 not received. 

 The ack from A to B, is the next expected byte number  536. 

 TCP only acknowledges bytes up to the first missing byte in 
the stream. 

 Thus TCP is set to support cumulative acknowledgements.  

 How could TCP support cumul. ack. but still not expect GBN 
behaviour from receiver ? 

B A 

Data (bytes 0-535) 

Ack (536) 

Data (bytes 900-1000) 



What does TCP do with out of 

order segment ? 

 TCP RFC does not impose any rules here. Its 

up to the implementer to decide. 

 Either it can be discarded, or buffered. 

 Most implementations store it and use later 

(similar to SR implementation).  



Telnet example 

 User starts a telnet session (remote login at 

console/command prompt) 

 Telnet behaviour is the following: 

 Each character entered by the user is echoed back 

to the terminal. 

 Thus if you enter C, when you see displayed on the 

screen, its been received by the server and has 

been echoed back to the client.  

 Thus 1 RTT occurs before character is displayed on 

screen.   



Telnet example 

 After login the initial 

sequence number of 

Host A is 42 and Host B 

is 79 (random 

assignment).  

 The letter C is an ascii 

character, and thus is 1 

byte in size.  

 3rd message sent has 

no data but specifies a 

sequence number.  

 



Purpose of lecture 

Chapter 3: Transport Layer 

 TCP sequencing 

 TCP handshaking  



3 way handshake 

 Client initiates connection by sending a 
segment with no payload. SYN bit = 1. 
Random initial sequence number is 
chosen (client_isn).  

 Server receives TCP SYN, allocates 
buffers/variables and sends a 
connection granted segment (SYNACK) 
to Client. This also does not contain 
any payload.  

 SYN=1, ACK field = client_isn+1. 
Server chooses its own initial sequence 
number (server_isn) 

 Client receives SYNACK and allocates 
buffers/variables. 

 Client then sends another segment to 
acknowledge the SYNACK with 
ACK=server_isn +1. SYN=0. This 
segment can also contain client-to-
server data. 



Closing a TCP connection 

 Client closes connection by 
setting FIN=1 

 Server responds with ACK 
for this segment. 

 Server then sends its own 
shutdown segment with 
FIN=1. 

 Finally the client 
acknowledges this and 
resources are de-allocated. 

 Why is FIN needed on both 
sides? 

 What could be the purpose 
of the TIMED_WAIT ? 



States of TCP client side 



States of TCP server side 



Accessing invalid ports 

 What is the behaviour if the client attempts to 

establish a TCP connection with a server port 

for which there is no ongoing socket. 

 The server will then send a special TCP 

segment with RST flag = 1. 

 RST indicates “I don’t have a socket for that 

segment. Please don’t resend it” 



Port scanning 

 Consider a port scanner sends a TCP segment to server port 6789. 

 3 possible outcomes: 

 Server sends SYNACK  port is open and an app is 
running.  

 TCP RST segment is received  Segment reached target 
host but the host is not running an application on that port. 
Indicates that the port is open (i.e. not blocked by a 
firewall) 

 No response – SYN was blocked probably by a firewall. 

 

 



SYN flood attack 

 As we have seen, the server allocates variables and buffers 
when a SYN is received (1st part of 3 way handshake).  

 This fact has been abused to create Denial of Service (DoS) 
attacks.  

 DoS is an attempt to make a resource unavailable for its 
intended users.  

 A Distributed DoS is where the attack originates from multiple 
clients. 

 With the SYN flood attack, a large number of SYN messages are 
sent, without completing the handshake. Since the server 
allocates resources at this time, a server can very quickly 
become overloaded and will then deny connections from 
legitimate users. 



SYN cookies 

 To prevent such attacks SYN cookies were introduced.  

 With SYN cookies, when a SYN is received no resources are 
assigned. Instead an initial TCP sequence number is created that 
is a function of source & destination IP addresses and ports, as 
well as a secret number. 

 This carefully crafted number is called the cookie.  

 The server responds with the sequence number to the client. 
Importantly the cookie is not stored. 

 In the case of a legitimate client, an ACK is sent with the 
sequence number = SYNACK +1  

 The server can then re-run the algorithm to regenerate the 
sequence number, and validate the session as legitimate.  

 Of course, the next logical step in the attackers arsenal is to 
complete the handshake.  


