
ELEN 4017

Network Fundamentals

Lecture 19

Purpose of lecture

Chapter 3: Transport Layer

 TCP sequencing

 TCP handshaking

TCP sequencing

 TCP views data as unstructured, but ordered stream of bytes.

 Sequence number of a segment is the byte stream number of the
first byte in that segment.

 Consider file of size 500 000 bytes. MSS = 1000 bytes.

 1st segment has seq # = 0

 2nd segment has seq # = 1000

 3rd segment has seq# = 2000 …. 500 segments are created.

Acknowledgement numbers

 TCP is full duplex.

 Consider host A and B are sending data to

each other.

 Some data is sent from B to A and this data

has a specific sequence number.

 The ack number used by Host A, is the

sequence number of the next byte Host A

is expecting from Host B.

Examples

 Host A has received bytes 0-535 in 1st

segment successfully.

 The ack from A to B, is the next expected

byte number  536

B A

Data (bytes 0-535)

Ack (536)

Examples

 Host A has received bytes 0-535 in 1st segment and bytes 900-
1000 in 2nd segment.

 For some reason bytes 536-899 not received.

 The ack from A to B, is the next expected byte number  536.

 TCP only acknowledges bytes up to the first missing byte in
the stream.

 Thus TCP is set to support cumulative acknowledgements.

 How could TCP support cumul. ack. but still not expect GBN
behaviour from receiver ?

B A

Data (bytes 0-535)

Ack (536)

Data (bytes 900-1000)

What does TCP do with out of

order segment ?

 TCP RFC does not impose any rules here. Its

up to the implementer to decide.

 Either it can be discarded, or buffered.

 Most implementations store it and use later

(similar to SR implementation).

Telnet example

 User starts a telnet session (remote login at

console/command prompt)

 Telnet behaviour is the following:

 Each character entered by the user is echoed back

to the terminal.

 Thus if you enter C, when you see displayed on the

screen, its been received by the server and has

been echoed back to the client.

 Thus 1 RTT occurs before character is displayed on

screen.

Telnet example

 After login the initial

sequence number of

Host A is 42 and Host B

is 79 (random

assignment).

 The letter C is an ascii

character, and thus is 1

byte in size.

 3rd message sent has

no data but specifies a

sequence number.

Purpose of lecture

Chapter 3: Transport Layer

 TCP sequencing

 TCP handshaking

3 way handshake

 Client initiates connection by sending a
segment with no payload. SYN bit = 1.
Random initial sequence number is
chosen (client_isn).

 Server receives TCP SYN, allocates
buffers/variables and sends a
connection granted segment (SYNACK)
to Client. This also does not contain
any payload.

 SYN=1, ACK field = client_isn+1.
Server chooses its own initial sequence
number (server_isn)

 Client receives SYNACK and allocates
buffers/variables.

 Client then sends another segment to
acknowledge the SYNACK with
ACK=server_isn +1. SYN=0. This
segment can also contain client-to-
server data.

Closing a TCP connection

 Client closes connection by
setting FIN=1

 Server responds with ACK
for this segment.

 Server then sends its own
shutdown segment with
FIN=1.

 Finally the client
acknowledges this and
resources are de-allocated.

 Why is FIN needed on both
sides?

 What could be the purpose
of the TIMED_WAIT ?

States of TCP client side

States of TCP server side

Accessing invalid ports

 What is the behaviour if the client attempts to

establish a TCP connection with a server port

for which there is no ongoing socket.

 The server will then send a special TCP

segment with RST flag = 1.

 RST indicates “I don’t have a socket for that

segment. Please don’t resend it”

Port scanning

 Consider a port scanner sends a TCP segment to server port 6789.

 3 possible outcomes:

 Server sends SYNACK  port is open and an app is
running.

 TCP RST segment is received  Segment reached target
host but the host is not running an application on that port.
Indicates that the port is open (i.e. not blocked by a
firewall)

 No response – SYN was blocked probably by a firewall.

SYN flood attack

 As we have seen, the server allocates variables and buffers
when a SYN is received (1st part of 3 way handshake).

 This fact has been abused to create Denial of Service (DoS)
attacks.

 DoS is an attempt to make a resource unavailable for its
intended users.

 A Distributed DoS is where the attack originates from multiple
clients.

 With the SYN flood attack, a large number of SYN messages are
sent, without completing the handshake. Since the server
allocates resources at this time, a server can very quickly
become overloaded and will then deny connections from
legitimate users.

SYN cookies

 To prevent such attacks SYN cookies were introduced.

 With SYN cookies, when a SYN is received no resources are
assigned. Instead an initial TCP sequence number is created that
is a function of source & destination IP addresses and ports, as
well as a secret number.

 This carefully crafted number is called the cookie.

 The server responds with the sequence number to the client.
Importantly the cookie is not stored.

 In the case of a legitimate client, an ACK is sent with the
sequence number = SYNACK +1

 The server can then re-run the algorithm to regenerate the
sequence number, and validate the session as legitimate.

 Of course, the next logical step in the attackers arsenal is to
complete the handshake.

