
ELEN 4017

Network Fundamentals

Lecture 18

Purpose of lecture

Chapter 3: Transport Layer

 Transmission Control Protocol Basics

 Timeout in TCP

Basics of TCP

 Reliable data transfer

 Connection-oriented (handshake)

 Not an end-to-end TDM/FDM connection.

 Not a virtual circuit (resource and path not

reserved)

 Full duplex (bi-directional)

 Point-to-point i.e. communications between a

single sender and receiver.

Uni and bi-directional

communication

Simplex

Half Duplex

Full Duplex

Examples ?

Point-to-point vs multipoint

Sender

Examples ?

Receiver

Receiver

Receiver

Receiver

Sender

Virtual circuit vs Datagram

Buffers

 TCP employs buffers to store data during

transmission.

 Buffers are assigned following a successful

handshake.

Maximum segment size (MSS)

 MSS defines the maximum amount of data

that can be grabbed and placed in a

segment.

 This is usually dimensioned using the length

of largest link-layer frame that can be sent by

the local host - called Maximum Transmission

Unit (MTU).

 There have been proposals to set the MSS

based on the path MTU value. Why ?

MSS

 Determine MTU (i.e. link layer frame)

 Fit a TCP segment into this MTU.

 What is the size of the application data  this

determines MSS

MTU IP Datagram TCP Segment App Data

MSS

TCP Segment

 Source and destination
ports

 32 bit sequence and
ACK no.

 Receive window (flow
control)

 Header length

 Flag field:
 RST, SYN, FIN are used

for connection
setup/teardown.

TCP Reliable transfer

 TCP uses a hybrid of GBN and SR.

 It also piggy-backs messages i.e. the

acknowledgment for client-to-server data, is

put into the same segment as server-to-

client data.

 The sequence numbers are assigned on byte

position, not packet number (more later).

Purpose of lecture

Chapter 3: Transport Layer

 Transmission Control Protocol Basics

 Timeout in TCP

Timeout handing

 How do we estimate an optimised timeout

value ?

 We don’t want a timeout that it is too long

since it will delay the pipelining once the

window is full.

 We don’t want a timeout that is too short,

since it means unnecessary retransmissions.

Estimating the RTT

 RTT is the time between sending a segment
to IP and receiving the ACK.

 TCP does not measure this for every
segment, usually just 1 segment at a time,
thus we usually have 1 sample every RTT.

 TCP also does not compute the RTT for a
retransmitted segment.

 These values are averaged to smooth out
fluctuations.

Exponential Weighted Moving

Average (EWMA)

 α  recommended = 0.125

 Weighted average, more weight assigned to

recent samples.

 Weight of a given sample decays

exponentially fast as updates proceed.

EstimatedRTT = (1- α).EstimatedRTT + α. SampleRTT

RTT sample and RTT

estimates

Variability of RTT (deviation)

 β recommended = 0.25

 Weighted moving average of deviation from

mean.

 In case of low fluctuation, DevRTT is small.

 TCP thus uses the following timeout interval

DevRTT = (1- β). DevRTT + β.| SampleRTT – EstimatedRTT|

TimeoutInterval =EstimatedRTT + 4.DevRTT

Special features of TCP –

Doubling timeout interval

 In case of retransmits, TCP sets the timeout

interval = twice the currently used interval.

 Thus the interval will grow exponentially for

each retransmit.

 This provides a limited form of congestion

control.

Fast retransmit

 A problem with timeout triggered retransmissions
is that the timeout period can be relatively long.

 The sender can often detect packet loss well before
the time-out event occurs, by noting so-called
duplicate ACKS.

 A duplicate ACK is an ACK that re-acknowledges a
segment for which the sender already received an
earlier ACK.

 If sender receives 3 duplicate ACKS back-to-back, it
assumes that the next packet in sequence was lost,
and re-transmits.

