
ELEN 4017

Network Fundamentals

Lecture 15

Purpose of lecture

Chapter 3: Transport Layer

 Reliable data transfer

Developing a reliable protocol

 Reliability implies:

 No data is corrupted (flipped bits)

 Data is delivered in order in which it was sent.

 No data is lost.

 We will incrementally develop a reliable data transfer protocol –
rdt

 Sending side of protocol is called rdt_send

 Receiving side is called rdt_rcv.

 The protocol will make use of an unreliable data transfer protocol
at lower layers – udt_send / udt_receive

 To simplify we will consider uni-directional data transfer. Note:
Protocol will exchange control messages in both directions.

Service abstraction to higher

layers

Finite State Machines (FSM)

 Arrows indicate transition from 1 state to next.

 Event is shown above horizontal line.

 Actions taken are shown below. Λ means no action

 Dashed arrow is initial state.

rdt 1.0 – Completely reliable

channel

 The sending side of rdt
accepts data from upper layer,
creates a packet and sends
packet into channel.

 The call to rdt_send occurs
from upper layer i.e.
application.

 rdt_send is immediately
available to process the next
packet.

 On receiving side, rdt receives
a packet from underlying
channel, extracts data from
packet, and delivers data to
higher layer.

Channel with bit errors

 Consider dictating a long message over the phone.

 In a typical scenario message taker might acknowledge each
sentence with OK or “Please repeat that”.

 This protocol uses positive and negative acknowledgements.

 In computer networks, protocols that rely on retransmission are
called Automatic Repeat ReQuest (ARQ) protocols.

 3 capabilities are needed in ARQ:

 Error detection

 Receiver feedback (ACK and NAK messages)

 Retransmission

 Lets consider rdt 2.0.

rdt 2.0: Reliable transfer over a

channel with bit errors - Sender

 In this case, assume that no packets are lost, but bits can be
corrupted during transmission.

 A checksum is created by sender, so that receiver can detect if
corruption has occurred.

 After packet is sent, wait for response.

 ACK do nothing. NAK retransmit.

 We can encode the ACK /NAK as a single bit.

rdt 2.0: Reliable transfer over a

channel with bit errors - Receiver

 Errors are detected by using the checksum.

 In case of no corruption, ACK is sent and data
forwarded upwards

 In case of corruption, NAK is sent.

Stop-and-wait

 When rdt2.0_send is in state wait for ACK/NAK, it

cannot process any more data, thus it is called a

Stop-and-wait protocol.

 Thus throughput of this protocol is poor.

Corrupt ACK/NAK

 A more serious problem is what happens in the case of the ACK/NAK
message itself being corrupted.

 We could add a checksum for ACK/NAK to resolve this, but how do we
recover from this state ?

 The difficulty is that in the case of a corrupt ACK/NAK, the sender has
no way of knowing if the data was received correctly or not.

 3 possibilities exist:
 Add new messages. Consider the human analogy. Sender might say “What

did you say?” (a new sender to receiver packet is sent). But this packet
could also be garbled, and so we don’t really solve anything with this
approach.

 Forward Error Correction – Add enough checksum bits so that receiver
can recover from corrupt message without requesting a retransmit.

 Resend when corrupt ACK/NAK- Sender must resend current data packet
when garbled ACK/NAK received. This introduces the problem of duplicate
packets. The receiver has no way of knowing whether the ACK/NAK sent
was correctly received at the sender, and thus cannot know if the packet
received is a new packet or not. The solution to this problem is to add a
sequence number to the outgoing packet.

Sequence number

 Logic on receiver:

 If sequence number of received packet is same

as that of previously received packet it must be

a retransmit.

 If it’s a new sequence number then it’s a new

packet.

 For the case of stop-and-wait the sequence

number can be 1 bit, and this value can

alternate.

rdt 2.1 sender

rdt 2.1 receiver

How does rdt2.1 react when it receives a duplicate packet

rdt 2.2: Replace NAK with ACK

 We can achieve same effect as a NAK, if we

send an ACK for the last correctly received

packet.

 Thus a sender receiving two ACK’s for the

same packet, knows that the subsequent

packet was not received. To achieve this the

ACK message must be extended to include

the sequence number of the packet being

acknowledged.

rdt 2.2 sender

isACK() is extended

to include the

sequence number

rdt 2.2 receiver

make_pkt() now

includes the

sequence number

rdt 3.0: Reliable transfer over a

lossy channel with bit errors

 In addition to bit corruption, the channel is now allowed to lose
packets:

 Thus we must address:

 How to detect packet loss?

 How to recover from packet loss?

 There are many strategies to deal with this. We will consider
case where sender is responsible for this.

 Consider the case where sender transmits a packet and either
that packet or the receivers ACK for that packet is lost.

 In either case, no reply occurs at the sender.

 If the sender is willing to wait long enough so that it is certain
that a packet has been lost, it can simply retransmit the packet.

 Our current rdt 2.2 receiver would support this.

Transmit timeout

 How long should the sender wait ?

 Sender should wait at least 1 x RTT, but this is very difficult to
estimate (router delays, different paths, …). Even a worst-case
estimate is difficult.

 If we use the worst case estimate, this could result in a very long
wait, but we would like the protocol to recover from packet loss
as soon as possible.

 However, the rdt 2.2 protocol is able to cope with duplicate
packets by using sequence numbers. Thus we can retransmit
even if a packet loss has not occurred.

 A countdown timer is used to cater for possible packet loss.

 The sender starts the timer when a message is sent. In the case
a response is received the timer is stopped. In the case of no
response, the timer generates a new event, so that sender can
handle this scenario.

 Since the sequence numbers alternate between 0 and 1, rdt 3.0
is sometimes called the alternating bit protocol.

rdt 3.0 sender

Note the

introduction of

timeout events

rdt3.0 receiver

 What would this look like ? Any changes

needed ?

Message flows

Message flows (contd)

Utilization of a stop-and-wait

protocol

 Consider two hosts located on
opposite sides of U.S

 RTT tprop = 30 * 10-3 s

 Transmission rate = 1Gbps

 For a packet size of 1000 bytes,
transmission time ttrans = 8 *10-6 s

 Utilization (U) is the fraction of the
time the sender is sending bits into
the channel.

 U = ttrans/(ttrans + RTT)

 For this case, utilization is very low (
0.00027)

 Throughput is actually 267 kps for this
1Gbps link.

 How do we improve this ?

