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Chapter 3: Transport Layer 
Our goals:  

 understand 

principles behind 

transport layer 

services: 

 multiplexing/demultipl

exing 

 reliable data transfer 

 flow control 

 congestion control 

 

 learn about transport 

layer protocols in the 

Internet: 

 UDP: connectionless 

transport 

 TCP: connection-oriented 

transport 

 TCP congestion control 

 



Purpose of lecture 

Chapter 3: Transport Layer 

 Transport-layer services 

 Multiplexing and demultiplexing 

 TCP vs UDP 



Transport services and protocols 
 provide logical 

communication between 

app processes running on 

different hosts 

 transport protocols run in 

end systems  

 send side: breaks app 

messages into segments, 

passes to  network layer 

 rcv side: reassembles 

segments into messages, 

passes to app layer 

 more than one transport 

protocol available to apps 

 Internet: TCP and UDP 
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Transport vs. network layer 

 network layer: logical 

communication 

between hosts 

 transport layer: logical 

communication 

between processes  

 relies on, enhances, 

network layer services 

 



ANN BILL 

Household analogy 

Household analogy: 

12 kids sending letters to 12 
kids 

 processes = kids 

 app messages = letters in 
envelopes 

 hosts = houses 

 transport protocol = Ann and 
Bill 

 network-layer protocol = 
postal service 

 

 Consider 2 houses – Jhb and Cape Town 

 Each house is home to 12 kids.  

 Kids in Jhb are cousins of kids in Cape 
Town. 

 Every week each kid writes a letter to each 
cousin in the other house. Letters are sent 
via normal postal service. 

 In each house there is 1 kid who is 
responsible for collecting the letters for 
postage and distributing the letters on 
arrival (Ann in Jhb and Bill in Cape Town) 

 



Internet transport-layer protocols 

 reliable, in-order 

delivery (TCP) 

 congestion control  

 flow control 

 connection setup 

 unreliable, unordered 

delivery: UDP 

 no-frills extension of 

“best-effort” IP 

 services not available:  

 delay guarantees 

 bandwidth guarantees 
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Characteristics of Internet 

protocol  

 Logical communication between hosts 

 Best-effort delivery service  no guarantees. 

 Does not guarantee: 

 Segment delivery 

 Orderly delivery 

 Data integrity 

 Thus IP referred to as an unreliable service.  



Services provided by transport 

layer (TCP and UDP) 

 Extending host-to-host delivery to process-to-process delivery  
called transport-layer multiplexing. 

 Integrity checking (error detection) 

 These are the only services that UDP provides, thus UDP also 
considered to be unreliable.  

 TCP provides: 

 Reliable data transfer 

 Flow control 

 Sequence numbers 

 Acknowledgements 

 Timers 

 Congestion control  



Purpose of lecture 

Chapter 3: Transport Layer 

 Transport-layer services 

 Multiplexing and demultiplexing 



Multiplexing and de-

multiplexing 

 Single user has the following 
active sessions: 
 1 FTP 

 2 Telnet 

 1 HTTP (Web browser) 

 Thus 4 network application 
processes running. 

 Encapsulation of application 
data from different processes 
into segments and passing 
segments to network layer is 
called multiplexing. 

 Transport layer must deliver 
data to appropriate process 
(de-multiplexing). 

 



How demultiplexing works 
 host receives IP datagrams 

 each datagram has 

source IP address, 

destination IP address 

 each datagram carries 1 

transport-layer segment 

 each segment has 

source, destination port 

number  

 host uses IP addresses & 

port numbers to direct 

segment to appropriate 

socket 

source port # dest port # 

32 bits 

application 
data  

(message) 

other header fields 

TCP/UDP segment format 



Requirements for multiplexing 

/de-multiplexing 

 Sockets must be uniquely identified 

 Each segment contains the source port number and 

destination port number. 

 Port number is 16 bit, first 1024 values are well-

known (reserved by well-known application 

protocols) 

 Typically the client port number is assigned 

dynamically and transparently to the application, 

whilst the server port number is specific.  



Processes/sockets and ports 

 Process is program running. 

 A process can only communicate via a doorway – a 
socket. 

 The socket is identified by: 
 IP address 

 Port Number 

 Connection oriented transport requires a socket per 
connection  source and destination info is used. 

P1 

Socket: 

- IP 

-Port # 

Transport protocol P2 

Socket: 

- IP 

-Port # 



UDP vs TCP 

 TCP offers the following over UDP: 

 Connection oriented 

 Flow control 

 Orderly delivery ( sequence numbers for 
packets) 

 Thus for TCP to achieve this, each TCP 
connection is assigned its own socket. 

 To find the correct socket to enter, look at 
source IP & port, as well as destination IP 
and port. 



TCP sockets – client side 

 If you open many TCP connections, then 

each connection on client, will use a different 

port number. 

Socket 1: 

SourceIP: ClientIP 

Source Port: 100 

Socket 2: 

SourceIP: ClientIP 

Source Port: 101 



TCP sockets – server side 

 On the server, all the 
requests will be for a 
specific destination port e.g. 
port 80 for HTTP traffic. 

 Thus the server, will 
maintain a unique socket 
for each connection. 
Why? 

 This socket will be identified 
by: 

 Source IP, Source port 

 Destination IP, Destination 
port 

Socket 1: 

SourceIP: ClientIP 

Source Port: 100 

DestIP:ServerIP 

DestPort:80 

Socket 2: 

SourceIP: ClientIP 

Source Port: 101 

DestIP:ServerIP 

DestPort:80 



TCP – 1 socket per connection 

Client 
IP:B 

P1 

client 
 IP: A 

P1 P2 P4 

server 
IP: C 

SP: 9157 

DP: 80 

SP: 9157 

DP: 80 

P5 P6 P3 

D-IP:C 

S-IP: A 

D-IP:C 

S-IP: B 

SP: 5775 

DP: 80 

D-IP:C 

S-IP: B 

SP: Source port 

DP: Destination port 



UDP 

 UDP is connectionless. Thus there is no need 

for the server to maintain separate sockets 

for each incoming user. 

 
UDP Socket 

 

Destination IP 

Destination Port 

Client 
IP:B 

P2 

client 
 IP: A 

P1 P1 P3 

server 
IP: C 

SP: 6428 
DP: 9157 

SP: 9157 
DP: 6428 

SP: 6428 
DP: 5775 

SP: 5775 
DP: 6428 



Linking sockets to processes 

 Here there is no rule. 

 Generally, 1 socket per process. 

 However for better performance e.g. web 

servers, you could have multiple sockets 

linking to 1 process. 

P4 P5 P6 P4 



UDP: User Datagram Protocol [RFC 768] 

 “no frills,” “bare bones” 

Internet transport protocol 

 “best effort” service, UDP 

segments may be: 

 lost 

 delivered out of order 

to app 

 connectionless: 

 no handshaking 

between UDP sender, 

receiver 

 each UDP segment 

handled independently 

of others 

 

Why is there a UDP? 

 no connection 

establishment (which can 

add delay) 

 simple: no connection 

state at sender, receiver 

 small segment header 

 no congestion control: 

UDP can blast away as 

fast as desired 

 



UDP: more 

 often used for streaming 

multimedia apps 

 loss tolerant 

 rate sensitive 

 other UDP uses 

 DNS 

 SNMP 

 reliable transfer over 

UDP: add reliability at 

application layer 

 application-specific 

error recovery! 

source port # dest port # 

32 bits 

Application 
data  

(message) 

UDP segment format 

length checksum 

Length, in 
bytes of UDP 

segment, 
including 

header 



UDP checksum 

Sender: 

 treat segment contents as 

sequence of 16-bit 

integers 

 checksum: addition (1’s 

complement sum) of 

segment contents 

 sender puts checksum 

value into UDP checksum 

field 

 

 

Receiver: 

 compute checksum of 

received segment 

 check if computed 

checksum equals checksum 

field value: 

 NO - error detected 

 YES - no error detected. 

But maybe errors 

nonetheless?  …. 

 

Goal: detect “errors” (e.g., flipped bits) in transmitted 

segment 

 



Benefits of UDP 

 Finer application level control over what data is sent 

and when:  

 When application sends data to UDP, it will be packaged and 

immediately sent to network layer 

 With TCP if links are congested, the sender will be throttled, 

thus message would be delayed. 

 TCP will also attempt to send a message until it is delivered.  

 E.g. Real time apps (e.g. VoIP) require a minimum sending 

rate, can tolerate some data loss and don’t require re-

transmission, thus are better suited to UDP. 



Benefits of UDP 

 No connection establishment 

 TCP establishes a connection by performing a handshake, thus 
adding some delay. 

 UDP does not introduce such a delay. 

 E.g. DNS runs over UDP. If it used TCP it would be much slower. 

 No connection state 

 For the purpose of reliable delivery and flow control TCP must 
store connection state. 

 This requires more overhead on the hosts, and thus a UDP 
server can typically handle many more active clients compared to 
TCP. 

 Packet overhead 

 TCP requires 20 bytes whereas UDP requires 8 bytes. 

 



Popular internet apps and their 

underlying protocols 



UDP applications 

 Routing Information Protocol (RIP) – used to update 
routing tables. Updates are sent periodically e.g. 
every 5 min, thus lost updates are not critical. 

 Simple Network Management Protocol (SNMP) – 
used to manage networks e.g. configure nodes, 
report errors, alarms. Typically used when network 
is in a stressed state e.g. congestion. Thus TCP 
would not be effective in such conditions.  

 Real-time apps – IP telephony, streaming video 
react very poorly to TCP congestion control, 
resulting in many service providers choosing UDP. 

 



UDP criticisms 

 The use of UDP for multi-media apps has been 
criticized. 

 If all users start to stream high bit-rate video, there 
would be so much packet overflow at routers that 
very few UDP packets would actually reach 
destination. 

 Moreover uncontrolled UDP senders would cause 
TCP senders to throttle their flows. 

 Thus overall throughput would be very poor. 

 There have been proposals to extend UDP to 
introduce congestion control mechanisms. 

 Example: Intelligent Packet Switch (telco) 



Port scanning 

 Port scanners are apps that sequentially scan ports 

looking for ports that accept TCP/UDP connections.  

 Since some ports are reserved by well-known 

applications, its possible to infer what app is running 

on a host by doing a port scan. 

 As an example MS SQL server (Database) runs on 

port 1341.  

 This fact was exploited by the Slammer Worm to 

exploit a vulnerability in SQL Server. 


