
ELEN 4017

Network Fundamentals

Lecture 13 & 14

Chapter 3: Transport Layer
Our goals:

 understand

principles behind

transport layer

services:

 multiplexing/demultipl

exing

 reliable data transfer

 flow control

 congestion control

 learn about transport

layer protocols in the

Internet:

 UDP: connectionless

transport

 TCP: connection-oriented

transport

 TCP congestion control

Purpose of lecture

Chapter 3: Transport Layer

 Transport-layer services

 Multiplexing and demultiplexing

 TCP vs UDP

Transport services and protocols
 provide logical

communication between

app processes running on

different hosts

 transport protocols run in

end systems

 send side: breaks app

messages into segments,

passes to network layer

 rcv side: reassembles

segments into messages,

passes to app layer

 more than one transport

protocol available to apps

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport vs. network layer

 network layer: logical

communication

between hosts

 transport layer: logical

communication

between processes

 relies on, enhances,

network layer services

ANN BILL

Household analogy

Household analogy:

12 kids sending letters to 12
kids

 processes = kids

 app messages = letters in
envelopes

 hosts = houses

 transport protocol = Ann and
Bill

 network-layer protocol =
postal service

 Consider 2 houses – Jhb and Cape Town

 Each house is home to 12 kids.

 Kids in Jhb are cousins of kids in Cape
Town.

 Every week each kid writes a letter to each
cousin in the other house. Letters are sent
via normal postal service.

 In each house there is 1 kid who is
responsible for collecting the letters for
postage and distributing the letters on
arrival (Ann in Jhb and Bill in Cape Town)

Internet transport-layer protocols

 reliable, in-order

delivery (TCP)

 congestion control

 flow control

 connection setup

 unreliable, unordered

delivery: UDP

 no-frills extension of

“best-effort” IP

 services not available:

 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Characteristics of Internet

protocol

 Logical communication between hosts

 Best-effort delivery service  no guarantees.

 Does not guarantee:

 Segment delivery

 Orderly delivery

 Data integrity

 Thus IP referred to as an unreliable service.

Services provided by transport

layer (TCP and UDP)

 Extending host-to-host delivery to process-to-process delivery 
called transport-layer multiplexing.

 Integrity checking (error detection)

 These are the only services that UDP provides, thus UDP also
considered to be unreliable.

 TCP provides:

 Reliable data transfer

 Flow control

 Sequence numbers

 Acknowledgements

 Timers

 Congestion control

Purpose of lecture

Chapter 3: Transport Layer

 Transport-layer services

 Multiplexing and demultiplexing

Multiplexing and de-

multiplexing

 Single user has the following
active sessions:
 1 FTP

 2 Telnet

 1 HTTP (Web browser)

 Thus 4 network application
processes running.

 Encapsulation of application
data from different processes
into segments and passing
segments to network layer is
called multiplexing.

 Transport layer must deliver
data to appropriate process
(de-multiplexing).

How demultiplexing works
 host receives IP datagrams

 each datagram has

source IP address,

destination IP address

 each datagram carries 1

transport-layer segment

 each segment has

source, destination port

number

 host uses IP addresses &

port numbers to direct

segment to appropriate

socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Requirements for multiplexing

/de-multiplexing

 Sockets must be uniquely identified

 Each segment contains the source port number and

destination port number.

 Port number is 16 bit, first 1024 values are well-

known (reserved by well-known application

protocols)

 Typically the client port number is assigned

dynamically and transparently to the application,

whilst the server port number is specific.

Processes/sockets and ports

 Process is program running.

 A process can only communicate via a doorway – a
socket.

 The socket is identified by:
 IP address

 Port Number

 Connection oriented transport requires a socket per
connection  source and destination info is used.

P1

Socket:

- IP

-Port #

Transport protocol P2

Socket:

- IP

-Port #

UDP vs TCP

 TCP offers the following over UDP:

 Connection oriented

 Flow control

 Orderly delivery ( sequence numbers for
packets)

 Thus for TCP to achieve this, each TCP
connection is assigned its own socket.

 To find the correct socket to enter, look at
source IP & port, as well as destination IP
and port.

TCP sockets – client side

 If you open many TCP connections, then

each connection on client, will use a different

port number.

Socket 1:

SourceIP: ClientIP

Source Port: 100

Socket 2:

SourceIP: ClientIP

Source Port: 101

TCP sockets – server side

 On the server, all the
requests will be for a
specific destination port e.g.
port 80 for HTTP traffic.

 Thus the server, will
maintain a unique socket
for each connection.
Why?

 This socket will be identified
by:

 Source IP, Source port

 Destination IP, Destination
port

Socket 1:

SourceIP: ClientIP

Source Port: 100

DestIP:ServerIP

DestPort:80

Socket 2:

SourceIP: ClientIP

Source Port: 101

DestIP:ServerIP

DestPort:80

TCP – 1 socket per connection

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

SP: Source port

DP: Destination port

UDP

 UDP is connectionless. Thus there is no need

for the server to maintain separate sockets

for each incoming user.

UDP Socket

Destination IP

Destination Port

Client
IP:B

P2

client
 IP: A

P1 P1 P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

Linking sockets to processes

 Here there is no rule.

 Generally, 1 socket per process.

 However for better performance e.g. web

servers, you could have multiple sockets

linking to 1 process.

P4 P5 P6 P4

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”

Internet transport protocol

 “best effort” service, UDP

segments may be:

 lost

 delivered out of order

to app

 connectionless:

 no handshaking

between UDP sender,

receiver

 each UDP segment

handled independently

of others

Why is there a UDP?

 no connection

establishment (which can

add delay)

 simple: no connection

state at sender, receiver

 small segment header

 no congestion control:

UDP can blast away as

fast as desired

UDP: more

 often used for streaming

multimedia apps

 loss tolerant

 rate sensitive

 other UDP uses

 DNS

 SNMP

 reliable transfer over

UDP: add reliability at

application layer

 application-specific

error recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum

Length, in
bytes of UDP

segment,
including

header

UDP checksum

Sender:

 treat segment contents as

sequence of 16-bit

integers

 checksum: addition (1’s

complement sum) of

segment contents

 sender puts checksum

value into UDP checksum

field

Receiver:

 compute checksum of

received segment

 check if computed

checksum equals checksum

field value:

 NO - error detected

 YES - no error detected.

But maybe errors

nonetheless? ….

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Benefits of UDP

 Finer application level control over what data is sent

and when:

 When application sends data to UDP, it will be packaged and

immediately sent to network layer

 With TCP if links are congested, the sender will be throttled,

thus message would be delayed.

 TCP will also attempt to send a message until it is delivered.

 E.g. Real time apps (e.g. VoIP) require a minimum sending

rate, can tolerate some data loss and don’t require re-

transmission, thus are better suited to UDP.

Benefits of UDP

 No connection establishment

 TCP establishes a connection by performing a handshake, thus
adding some delay.

 UDP does not introduce such a delay.

 E.g. DNS runs over UDP. If it used TCP it would be much slower.

 No connection state

 For the purpose of reliable delivery and flow control TCP must
store connection state.

 This requires more overhead on the hosts, and thus a UDP
server can typically handle many more active clients compared to
TCP.

 Packet overhead

 TCP requires 20 bytes whereas UDP requires 8 bytes.

Popular internet apps and their

underlying protocols

UDP applications

 Routing Information Protocol (RIP) – used to update
routing tables. Updates are sent periodically e.g.
every 5 min, thus lost updates are not critical.

 Simple Network Management Protocol (SNMP) –
used to manage networks e.g. configure nodes,
report errors, alarms. Typically used when network
is in a stressed state e.g. congestion. Thus TCP
would not be effective in such conditions.

 Real-time apps – IP telephony, streaming video
react very poorly to TCP congestion control,
resulting in many service providers choosing UDP.

UDP criticisms

 The use of UDP for multi-media apps has been
criticized.

 If all users start to stream high bit-rate video, there
would be so much packet overflow at routers that
very few UDP packets would actually reach
destination.

 Moreover uncontrolled UDP senders would cause
TCP senders to throttle their flows.

 Thus overall throughput would be very poor.

 There have been proposals to extend UDP to
introduce congestion control mechanisms.

 Example: Intelligent Packet Switch (telco)

Port scanning

 Port scanners are apps that sequentially scan ports

looking for ports that accept TCP/UDP connections.

 Since some ports are reserved by well-known

applications, its possible to infer what app is running

on a host by doing a port scan.

 As an example MS SQL server (Database) runs on

port 1341.

 This fact was exploited by the Slammer Worm to

exploit a vulnerability in SQL Server.

