ELEN 4017

Network Fundamentals Lecture 12

Purpose of lecture

Chapter 2: Application Layer

DNS

People: many identifiers:

ID#, name, passport #

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., ww.yahoo.com - used by humans

Q: map between IP addresses and name?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol
 host, routers, name servers
 to communicate to resolve
 names (address/name
 translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network's "edge"

DNS

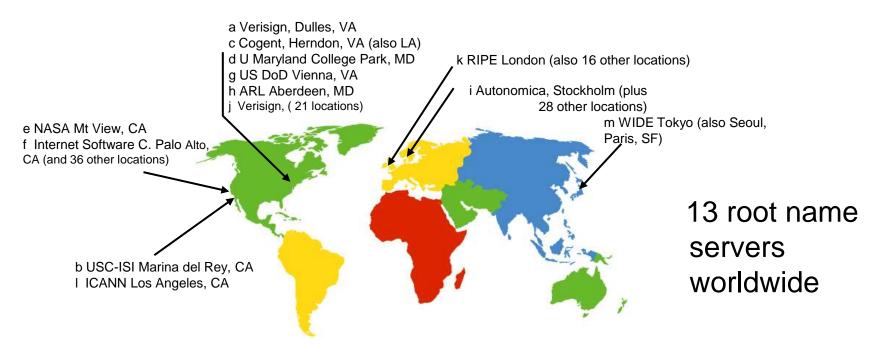
DNS services

- hostname to IP address translation
- host aliasing
 - Canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: set of IP addresses for one canonical name

Why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance

doesn't scale!


Distributed, Hierarchical Database Root DNS Servers org DNS servers pbs.org DNS servers poly.edu umass.edu DNS servers poly.edu umass.edu DNS servers DNS servers

Client wants IP for www.amazon.com; 1st approx:

- client queries a root server to find com DNS server
- client queries com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

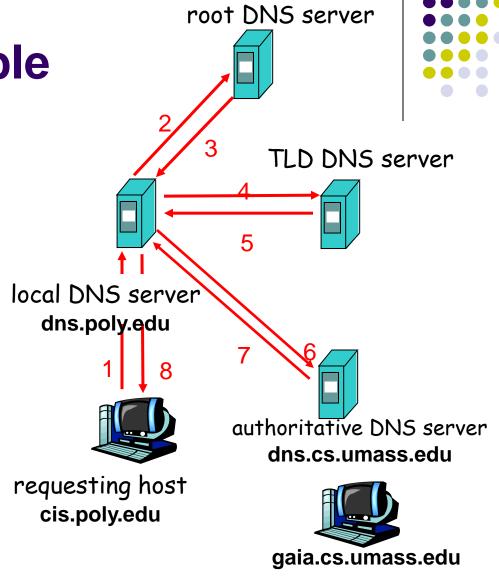
DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD and Authoritative Servers

- Top-level domain (TLD) servers:
 - responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
 - Network Solutions maintains servers for com TLD
 - Educause for edu TLD
- Authoritative DNS servers:
 - organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web, mail).
 - can be maintained by organization or service provider

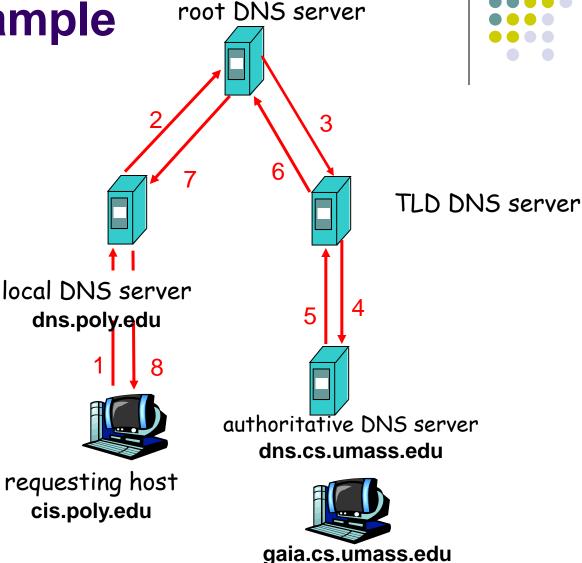
Local Name Server


- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one.
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:


- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

DNS: caching and updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- update/notify mechanisms under design by IETF
 - RFC 2136
 - http://www.ietf.org/html.charters/dnsind-charter.html

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address

- Type=NS
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain

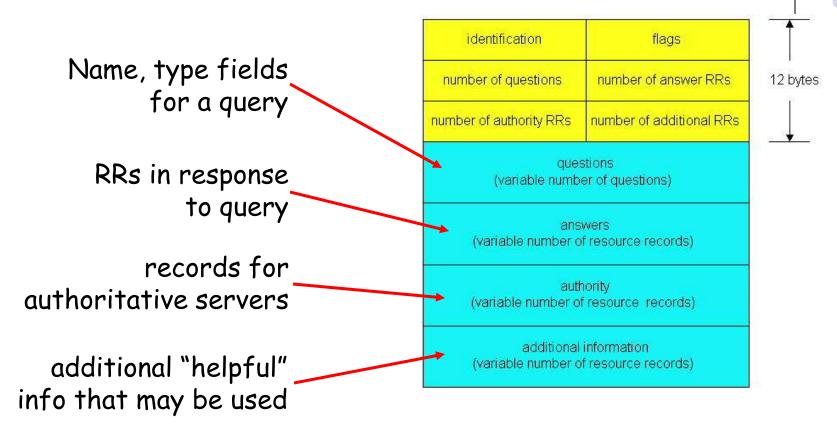
- Type=CNAME
 - name is alias name for some "canonical" (the real) name www.ibm.com is really servereast.backup2.ibm.com
 - value is canonical name
- Type=MX
 - value is name of mailserver associated with name

DNS protocol, messages

DNS protocol: query and reply messages, both with

same message format

msg header


 identification: 16 bit # for query, reply to query uses same #

- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

identification	flags
number of questions	number of answer RRs
number of authority RRs	number of additional RRs
ques (variable numbe	tions er of questions)
ansv (variable number of	
auth (variable number of	
additional i (variable number of	nformation

12 bytes

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
```

- create authoritative server Type A record for www.networkuptopia.com; Type MX record for networkutopia.com
- How do people get IP address of your Web site?

DNS security

- DNS underpins important Internet services (web browsing / email)
- Thus a successful attack on DNS infrastructure could be catastrophic.
- Read "Focus on security" article in textbook:
 - DDOS
 - DNS Poisoning Man in the Middle