
ELEN 4017

Network Fundamentals

Lecture 10 & 11

Purpose of lecture

Chapter 2: Application Layer

 Web and HTTP (Caching)

Web caches (proxy server)

 user sets browser:

Web accesses via

cache

 browser sends all

HTTP requests to

cache

 object in cache: cache

returns object

 else cache requests

object from origin

server, then returns

object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

More about Web caching

 cache acts as both

client and server

 typically cache is

installed by ISP

(university, company,

residential ISP)

Why Web caching?

 reduce response time

for client request

 reduce traffic on an

institution’s access link.

 Internet dense with

caches: enables “poor”

content providers to

effectively deliver

content (but so does

P2P file sharing)

Caching example
Assumptions

 average object size = 100,000 bits

 avg. request rate from institution’s

browsers to origin servers =

15/sec

 delay from institutional router to

any origin server and back to

router = 2 sec

Consequences

 utilization on LAN = 15%

 utilization on access link = 100%

 total delay = Internet delay +

access delay + LAN delay

 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

Caching example (cont)
possible solution

 increase bandwidth of

access link to, say, 10 Mbps

consequence
 utilization on LAN = 15%

 utilization on access link = 15%

 Total delay = Internet delay +

access delay + LAN delay

 = 2 sec + msecs + msecs

 often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

Caching example (cont)

possible solution: install
cache

 suppose hit rate is 0.4

consequence
 40% requests will be

satisfied almost immediately

 60% requests satisfied by
origin server

 utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec)

 total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional

cache

Conditional GET

 Goal: don’t send object if

cache has up-to-date

cached version

 cache: specify date of

cached copy in HTTP

request

If-modified-since:

<date>

 server: response contains

no object if cached copy is

up-to-date:

HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

Purpose of lecture

Chapter 2: Application Layer

 FTP and email

FTP: the file transfer protocol

 transfer file to/from remote host

 client/server model

 client: side that initiates transfer (either to/from

remote)

 server: remote host

 ftp: RFC 959

 ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

FTP: separate control, data connections

 FTP client contacts FTP server at

port 21, TCP is transport protocol

 client authorized over control

connection

 client browses remote directory

by sending commands over

control connection.

 when server receives file

transfer command, server opens

2nd TCP connection (for file) to

client

 after transferring one file, server

closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

 server opens another TCP data

connection to transfer another

file.

 control connection: “out of

band”

 FTP server maintains “state”:

current directory, earlier

authentication

FTP commands, responses

Sample commands:

 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file in

current directory

 RETR filename retrieves

(gets) file

 STOR filename stores

(puts) file onto remote host

Sample return codes

 status code and phrase (as

in HTTP)

 331 Username OK,

password required

 125 data connection

already open;

transfer starting

 425 Can’t open data

connection

 452 Error writing

file

Secure FTP (SCP)

 Command line demo (SCP)

WinSCP

Purpose of lecture

Chapter 2: Application Layer

 FTP

 Email

Electronic Mail

Three major components:

 user agents

 mail servers

 simple mail transfer protocol:

SMTP

User Agent

 a.k.a. “mail reader”

 composing, editing, reading

mail messages

 e.g., Outlook, Thunderbird

 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: mail servers

Mail Servers

 mailbox contains incoming

messages for user

 message queue of outgoing

(to be sent) mail messages

 SMTP protocol between mail

servers to send email

messages

 client: sending mail server

 “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from client to

server, port 25

 direct transfer: sending server to receiving server

 three phases of transfer

 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction

 commands: ASCII text

 response: status code and phrase

 messages must be in 7-bit ASCII

Scenario: Alice sends message to

Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message to

her mail server; message

placed in message queue

3) Client side of SMTP opens

TCP connection with Bob’s

mail server

4) SMTP client sends Alice’s

message over the TCP

connection

5) Bob’s mail server places the

message in Bob’s mailbox

6) Bob invokes his user agent to

read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Sample SMTP interaction
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

Server response after TCP conn opened

Try SMTP interaction for yourself:

 telnet servername 25

 see 220 reply from server

 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client

(reader)

SMTP: final words

 SMTP uses persistent

connections

 SMTP requires message

(header & body) to be in 7-

bit ASCII

 SMTP server uses
CRLF.CRLF to determine

end of message

Comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII

command/response

interaction, status codes

 HTTP: each object

encapsulated in its own

response msg

 SMTP: multiple objects sent

in multipart msg

Mail message format

SMTP: protocol for exchanging

email msgs

RFC 822: standard for text

message format:

 header lines, e.g.,

 To:

 From:

 Subject:

different from SMTP

commands!

 body

 the “message”, ASCII

characters only

header

body

blank
line

Message format: multimedia extensions

 MIME: multimedia mail extension, RFC 2045, 2056

 additional lines in msg header declare MIME content

type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.........................

......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]

 authorization (agent <-->server) and download

 IMAP: Internet Mail Access Protocol [RFC 1730]

 more features (more complex)

 manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

POP3 protocol

authorization phase

 client commands:

 user: declare

username

 pass: password

 server responses

 +OK

 -ERR

transaction phase, client:

 list: list message

numbers

 retr: retrieve message by

number

 dele: delete

 C: list
 S: 1 498

 S: 2 912

 S: .

 C: retr 1

 S: <message 1 contents>

 S: .

 C: dele 1

 C: retr 2

 S: <message 1 contents>

 S: .

 C: dele 2

 C: quit

 S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

POP3 (more) and IMAP
More about POP3

 Previous example

uses “download and

delete” mode.

 Bob cannot re-read e-

mail if he changes

client

 “Download-and-keep”:

copies of messages

on different clients

 POP3 is stateless

across sessions

IMAP

 Keep all messages in

one place: the server

 Allows user to

organize messages in

folders

 IMAP keeps user

state across sessions:

 names of folders and

mappings between

message IDs and

folder name

Hotmail - history

 Dec 1995 founders approached venture
capitalist, pitched web email.

 3 full time, 12-14 part time, launched in July
1996

 After 1 month had 100 000 users

 18 months – 12 million subscribers

 Sold to Microsoft for $400 million.

 First mover advantage & viral marketing 
killer application.

