
ELEN 4017

Network Fundamentals

Lecture 10 & 11

Purpose of lecture

Chapter 2: Application Layer

 Web and HTTP (Caching)

Web caches (proxy server)

 user sets browser:

Web accesses via

cache

 browser sends all

HTTP requests to

cache

 object in cache: cache

returns object

 else cache requests

object from origin

server, then returns

object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

More about Web caching

 cache acts as both

client and server

 typically cache is

installed by ISP

(university, company,

residential ISP)

Why Web caching?

 reduce response time

for client request

 reduce traffic on an

institution’s access link.

 Internet dense with

caches: enables “poor”

content providers to

effectively deliver

content (but so does

P2P file sharing)

Caching example
Assumptions

 average object size = 100,000 bits

 avg. request rate from institution’s

browsers to origin servers =

15/sec

 delay from institutional router to

any origin server and back to

router = 2 sec

Consequences

 utilization on LAN = 15%

 utilization on access link = 100%

 total delay = Internet delay +

access delay + LAN delay

 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

Caching example (cont)
possible solution

 increase bandwidth of

access link to, say, 10 Mbps

consequence
 utilization on LAN = 15%

 utilization on access link = 15%

 Total delay = Internet delay +

access delay + LAN delay

 = 2 sec + msecs + msecs

 often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

Caching example (cont)

possible solution: install
cache

 suppose hit rate is 0.4

consequence
 40% requests will be

satisfied almost immediately

 60% requests satisfied by
origin server

 utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec)

 total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional

cache

Conditional GET

 Goal: don’t send object if

cache has up-to-date

cached version

 cache: specify date of

cached copy in HTTP

request

If-modified-since:

<date>

 server: response contains

no object if cached copy is

up-to-date:

HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

Purpose of lecture

Chapter 2: Application Layer

 FTP and email

FTP: the file transfer protocol

 transfer file to/from remote host

 client/server model

 client: side that initiates transfer (either to/from

remote)

 server: remote host

 ftp: RFC 959

 ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

FTP: separate control, data connections

 FTP client contacts FTP server at

port 21, TCP is transport protocol

 client authorized over control

connection

 client browses remote directory

by sending commands over

control connection.

 when server receives file

transfer command, server opens

2nd TCP connection (for file) to

client

 after transferring one file, server

closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

 server opens another TCP data

connection to transfer another

file.

 control connection: “out of

band”

 FTP server maintains “state”:

current directory, earlier

authentication

FTP commands, responses

Sample commands:

 sent as ASCII text over

control channel

 USER username

 PASS password

 LIST return list of file in

current directory

 RETR filename retrieves

(gets) file

 STOR filename stores

(puts) file onto remote host

Sample return codes

 status code and phrase (as

in HTTP)

 331 Username OK,

password required

 125 data connection

already open;

transfer starting

 425 Can’t open data

connection

 452 Error writing

file

Secure FTP (SCP)

 Command line demo (SCP)

WinSCP

Purpose of lecture

Chapter 2: Application Layer

 FTP

 Email

Electronic Mail

Three major components:

 user agents

 mail servers

 simple mail transfer protocol:

SMTP

User Agent

 a.k.a. “mail reader”

 composing, editing, reading

mail messages

 e.g., Outlook, Thunderbird

 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: mail servers

Mail Servers

 mailbox contains incoming

messages for user

 message queue of outgoing

(to be sent) mail messages

 SMTP protocol between mail

servers to send email

messages

 client: sending mail server

 “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from client to

server, port 25

 direct transfer: sending server to receiving server

 three phases of transfer

 handshaking (greeting)

 transfer of messages

 closure

 command/response interaction

 commands: ASCII text

 response: status code and phrase

 messages must be in 7-bit ASCII

Scenario: Alice sends message to

Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message to

her mail server; message

placed in message queue

3) Client side of SMTP opens

TCP connection with Bob’s

mail server

4) SMTP client sends Alice’s

message over the TCP

connection

5) Bob’s mail server places the

message in Bob’s mailbox

6) Bob invokes his user agent to

read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Sample SMTP interaction
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

Server response after TCP conn opened

Try SMTP interaction for yourself:

 telnet servername 25

 see 220 reply from server

 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client

(reader)

SMTP: final words

 SMTP uses persistent

connections

 SMTP requires message

(header & body) to be in 7-

bit ASCII

 SMTP server uses
CRLF.CRLF to determine

end of message

Comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII

command/response

interaction, status codes

 HTTP: each object

encapsulated in its own

response msg

 SMTP: multiple objects sent

in multipart msg

Mail message format

SMTP: protocol for exchanging

email msgs

RFC 822: standard for text

message format:

 header lines, e.g.,

 To:

 From:

 Subject:

different from SMTP

commands!

 body

 the “message”, ASCII

characters only

header

body

blank
line

Message format: multimedia extensions

 MIME: multimedia mail extension, RFC 2045, 2056

 additional lines in msg header declare MIME content

type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.........................

......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]

 authorization (agent <-->server) and download

 IMAP: Internet Mail Access Protocol [RFC 1730]

 more features (more complex)

 manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

POP3 protocol

authorization phase

 client commands:

 user: declare

username

 pass: password

 server responses

 +OK

 -ERR

transaction phase, client:

 list: list message

numbers

 retr: retrieve message by

number

 dele: delete

 C: list
 S: 1 498

 S: 2 912

 S: .

 C: retr 1

 S: <message 1 contents>

 S: .

 C: dele 1

 C: retr 2

 S: <message 1 contents>

 S: .

 C: dele 2

 C: quit

 S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

POP3 (more) and IMAP
More about POP3

 Previous example

uses “download and

delete” mode.

 Bob cannot re-read e-

mail if he changes

client

 “Download-and-keep”:

copies of messages

on different clients

 POP3 is stateless

across sessions

IMAP

 Keep all messages in

one place: the server

 Allows user to

organize messages in

folders

 IMAP keeps user

state across sessions:

 names of folders and

mappings between

message IDs and

folder name

Hotmail - history

 Dec 1995 founders approached venture
capitalist, pitched web email.

 3 full time, 12-14 part time, launched in July
1996

 After 1 month had 100 000 users

 18 months – 12 million subscribers

 Sold to Microsoft for $400 million.

 First mover advantage & viral marketing
killer application.

