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5. Introduction

bit-streams inherently discrete-time, all physical media are
continuous-time in nature

modulation → bit stream represented as a continuous-time
signalling

Consider PAM:

• baseband PAM

• passband transmission



5. Introduction (Continued)
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5. Introduction (Continued)

Examples of PAM:

• PSK

• AM-PM

• QAM



5.1. Baseband PAM

Baseband PAM transmitter sends information by modulating the
amplitudes of a series of pulses:

s(t) =
∞∑

m=−∞
amg(t −mT ) (1)

1

T
→ symbol rate

g(t) → pulse shape

Set of amplitudes {am} → symbols

Signal → sequence of possibly overlapping pulses → amplitude of
m’th pulse determined by m’th symbol

Equation (1) → PAM, regardless of shape of g(t)



5.1. Baseband PAM

Example 5.1 Concepts:

1. Mapper → converts input bit stream to modulating symbol
stream
a. In practice, symbols restricted to finite alphabet A
b. Convenient when |A| = 2b

2. transmit filter with impulse response g(t)



5.1. Baseband PAM

Note difference between baud rate (symbol rate) and bit rate

Assumption → symbols from mapper independent and identically
distributed, white discrete random process



5.1.1. Nyquist Pulse Shapes

Receiver → recover transmitted symbols from a continuous-time
PAM signal distorted by noisy channel

Assume for now noiseless PAM, in order to explore relationship
between bandwidth and symbol rate

To recover the symbols {am} from s(t) → sample s(t) at multiples
of the symbol period

k-th sample:

s(kT ) =
∑∞

m=−∞ amg(kT −mT )
= am ∗ g(kT )

Interpretation → discrete-time convolution of the symbol sequence
with a sampled version of the pulse shape



5.1.1. Nyquist Pulse Shapes

Decomposing the convolution sum into two parts:

s(kT ) = g(0)ak +
∑
m 6=k

amg(kT −mT )

• First term → desired signal

• Second term → intersymbol interference (ISI)

ISI → interference from neighboring symbols



5.1.1. Nyquist Pulse Shapes

When is no ISI present OR s(kT ) = ak?

When second term
∑

m 6=k amg(kT −mT ) = 0

Alternatively:

g(kT ) = δk



5.1.1. Nyquist Pulse Shapes
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5.1.1. Nyquist Pulse Shapes

g(kT ) = δk (2)

Taking Fourier transform on both sides and making use of
sampling theorem:

1

T

∞∑
m=−∞

G
(
f − m

T

)
= 1 (3)

Equation 3 → Nyquist criterion

Nyquist pulse → satisfies Eq 3 (and Eq 2)



5.1.1. Nyquist Pulse Shapes

Nyquist criterion is the key that ties symbol rate to bandwidth

Nyquist criterion implies existence of a minimum bandwidth for
transmitting at a certain symbol rate with no ISI

Alternatively, given certain bandwidth, maximum symbol rate for
avoiding ISI.



5.1.1. Nyquist Pulse Shapes

Example 5-4

Sketch

Plot depicts 1
T

∑∞
m=−∞ G

(
f − m

T

)
for a particular pulse shape

g(t) whose bandwidth is less than 1/(2T )

Effect of sampling → place an image of G (f ) at each multiple of
the sampling rate.

Regardless of shape of G (f ) → always gap between images
whenever the pulse shape bandwidth is less than half the symbol
rate

Such gaps prevent the images from adding to a constant



5.1.1. Nyquist Pulse Shapes

From example 5-4 evident minimum bandwidth required to avoid
ISI is half the symbol rate 1/(2T )

Bandwidth of 1/(2T ) eliminates gap between aliases

in order to ensure aliases add to a constant, each alias must itself
have a rectangular shape, giving G (F ):

−1
2T

1
2T

f

G(f)

0



5.1.1. Nyquist Pulse Shapes

Taking inverse Fourier transform → minimum-bandwidth pulse
satisfying Nyquist criterion:

g(t) =
sin(πt/T )

πt/T

Refer to sketch

Observe that pulse has zero crossings at all multiples of T except
at t = 0, where g(0) = 1



5.1.1. Nyquist Pulse Shapes

Example 5-5.

Using sinc pulses, transmit a0 = 1 and a1 = 2

Sketch resulting signal



5.1.1. Nyquist Pulse Shapes

Nyquist criterion implies a maximum symbol rate for a given
bandwidth

If we are constrained to frequencies |f | <W , the maximum
symbol rate that can be achieved with zero ISI is 1/T = 2W



5.1.1. Nyquist Pulse Shapes

Minimum bandwidth is desirable, but the ideal bandlimited pulse is
impractical

The bandwidth W of a practical pulse is larger than its minimum
value by a factor 1 + α:

W =
1 + α

2T

α → excess-bandwidth parameter



5.1.1. Nyquist Pulse Shapes

Excess bandwidth also expressed as percentage, 100 % → α = 1
and bandwidth of 1/T (twice the minimum bandwidth)

Practical systems, excess bandwidth in range of 10 % to 100 %

Increasing the excess bandwidth simplifies the implementation
(simpler filtering and timing recovery) at expense of channel
bandwidth



5.1.1. Nyquist Pulse Shapes

Zero-excess-bandwidth pulse is unique → ideal bandlimited pulses

non-zero excess bandwidth, pulse shape no longer unique

Commonly used pulses with nonzero excess bandwidth that satisfy
the Nyquist criterion are the raised-cosine pulses, given by

g(t) =

(
sin(πt/T )

πt/T

)(
cos(απt/T )

1− (2αt/T )2

)



5.1.1. Nyquist Pulse Shapes

Fourier transforms of raised-cosine pulses:

G (f ) =


T , |f | ≤ 1−α

2T

Tcos2
[
πT
2α

(
|f | − 1−α

2T

)]
, 1−α

2T < |f | ≤ 1+α
2T

0, 1+α
2T < |f |



5.1.1. Nyquist Pulse Shapes

Refer to Fig 5.2

α = 0 → ideally bandlimited pulses

Other values of α, energy rolls of more gradually (α also roll-off
factor)

Shape of roll-off is that of a cosine raised above abscissa.



5.1.2. The Impact of Filtering on PAM

Consider impact of a channel

Many important channels modeled as a linear time-invariant filter
with impulse response b(t) and additive noise n(t)



5.1.2. The Impact of Filtering on PAM

PAM signal applied to linear channel with impulse response b(t)
and additive noise n(t):

r(t) =

∫ ∞
−∞

b(τ)
∞∑

m=−∞
amg(t −mT − τ)dτ + n(t)

rewritten as

r(t) =
∞∑

m=−∞
amh(t −mT ) + n(t)

where h(t) = g(t) ∗ b(t) is the convolution of g(t) with b(t):

h(t) =

∫ ∞
−∞

g(τ)b(t − τ)dτ



5.1.2. The Impact of Filtering on PAM

r(t) → received pulse → also PAM if transmitted pulse is PAM:

• Different pulse shape

• added noise

Typical receiver front end consists of a receive filter f (t) followed
by a sampler

r(t) y(t) yk

To Decision Device

Receive filter Sampler

f(t)



5.1.2. The Impact of Filtering on PAM

Receive filter perform several functions, including:

• compensating for the distortion of the channel

• diminishing the effect of additive noise

Receive filter conditions the received signal before sampling

If bandwidth of additive noise wider than that of transmitted
signal, receive filter can reject out-of-band noise

Receive filter might be chosen to avoid ISI after sampling



5.1.2. The Impact of Filtering on PAM

Output of receive filter (input to sampler):

y(t) =
∞∑

m=−∞
amp(t −mT ) + n′(t)

where p(t) = g(t) ∗ b(t) ∗ f (t) → overall pulse shape

noise n′(t) is filtered version of the received noise n(t)

Receive filter output is another PAM signal, pulse shape p(t) and
with added noise



5.1.2. The Impact of Filtering on PAM

To avoid ISI, overall pulse shape p(t) = g(t) ∗ b(t) ∗ f (t) must be
Nyquist

Thus, p(kT ) = δk , or
∑

m P(f − m
T ) = T

When this condition is satisfied, the k-th sample y(kT ) reduces to
ak plus noise, with no interference from {al 6=k}

Since P(f ) = G (f )B(f )F (f ), a bandwidth limitation on the
channel necessarily leads to the same bandwidth limitation on the
overall pulse shape.

Thus, it is the channel bandwidth W that determines the
maximum symbol rate, namely 1/T = 2W



5.1.3. ISI and Eye diagrams

Self study



5.1.4. Bit rate and Spectral Efficiency

Symbols independent and uniform from alphabet A of size |A| →
each symbol conveys log2|A| bits of information

Transmits 1/T symbols per second, bit rate is:

Rb =
log2|A|

T
b/s



5.1.4. Bit rate and Spectral Efficiency

Increase bit rate

• Increase size of alphabet

• increase symbol rate

Symbol rate is bounded by the bandwidth constraints of channel

Size of alphabet constrained by:

• allowable transmitted power

• severity of the additive noise on the channel



5.1.4. Bit rate and Spectral Efficiency

Constraints on symbol rate and alphabet size limits available bit
rate for a given channels

Spectral efficiency:

ν =
Rb

W



5.1.4. Bit rate and Spectral Efficiency

Baseband PAM:

ν =
Rb

W
=

log2|A|/T
(1 + α)/(2T )

=
2 log2|A|

1 + α

Maximal spectral efficiency:

νmax = 2 log2|A|



5.2. Passband PAM

Many practical communication channels are passband in nature →
frequency response that of bandpass filtered
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5.2.1. Three Representations of Passband
PAM

Method 1

Start with suboptimal strategy → pulse-amplitude-modulation
double-sideband

Passband channel has bandwidth B

Start with a real-valued baseband PAM signal with bandwidth B/2

Modulate carrier frequency fc , by multiplying fc and baseband
PAM:

s(t) =
√

2 cos(2πfct)
∑
k

akg(t − kT )



5.2.1. Three Representations of Passband
PAM

Method 1

Modulated signal will pass undistorted through channel when pulse
shape g(t) is low-pass with bandwidth B/2

Avoiding ISI, symbol rate is twice the pulse shape bandwidth
(Symbol rate = 1/T = B)

Maximal spectral efficiency of PAM-DSB with real alphabet A is
log2|A|



5.2.1. Three Representations of Passband
PAM

Method 2

Recognise upper sideband and lower sideband of s(t) conveys
identical information

Double spectral efficiency by using single-sideband (SSB), transmit
only one sideband

Disadvantage → difficulty in realizing filtering



5.2.1. Three Representations of Passband
PAM

Method 3

Recognise that PAM-DSB carries information only in in-phase
component

Quadrature component is zero

Double the spectral efficiency of PAM-DSB by transmitting a
second baseband PAM signal in quadrature:

s(t) =
√

2 cos(2πfct)
∑
k

aIkg(t−kT )−
√

2 sin(2πfct)
∑
k

aQk g(t−kT )



5.2.1. Three Representations of Passband
PAM

Method 3

Bandwidth the same as PAM-DSB, but conveys twice as much
information

Assume both baseband PAM signals use the same pulse shape

Symbols modulating in-phase and quadrature components are
denoted {aIk} and {aQk }

QAM → {aIk} and {aQk } chosen independently from same real
alphabet A

See Fig 5.10



5.2.1. Three Representations of Passband
PAM

Complex Envelope

Can represent s(t) in terms of complex envelope:

s(t) =
√

2Re
{
s̃(t)e j2πfc t

}
where the complex envelope of a passband PAM signal is:

s̃(t) =
∑
k

akg(t − kT )

with ak = aIk + jaQk



5.2.1. Three Representations of Passband
PAM

Complex Envelope

Observe that complex envelope of passband PAM looks exactly like
real-valued baseband PAM signal

Passband PAM signal → signal whose complex envelope is the
baseband PAM signal with complex symbols and a real pulse shape

For a realization, refer to Fig 5-11 (Theoretical)



5.2.1. Three Representations of Passband
PAM

Comparing Method 2 and Method 3

Both passband PAM and PAM-SSB double spectral efficiency of
PAM-DSB

PAM-SSB → fixes the bit rate but cuts bandwidth in half

passband PAM → doubles bit rate while keeping the bandwidth
fixed



5.2.1. Three Representations of Passband
PAM

Another representation for Passband PAM

Another presentation of passband PAM → express data symbols
am in polar coordinates

am = cme
jθm

So that

s(t) =
√

2Re
{∑∞

−∞ cme
j2πfc t+θmg(t −mT )

}
=
√

2
∑∞
−∞ cm cos(2πfct + θm)g(t −mT )

Each pulse g(t −mT ) multiplied by carrier, where amplitude and
phase of the carrier is determined by the amplitude and phase of am

Sometimes called AM/PM



5.2.2. Constellations

Alphabet → set A of symbols available for transmission

Baseband signal has real-valued alphabet

Passband PAM signal → alphabet that is a set of complex numbers

For real-valued and complex alphabets → each symbol represents
log2|A| bits



5.2.2. Constellations

Complex-valued alphabet is best described by plotting the alphabet
as a set of points in a complex plain

Plot → signal constellation

Example 5-12 - on blackboard

Example 5-13 - on blackboard



5.2.2. Constellations
Energy of alphabet:

Assumptions:

• All symbols are equally likely
• pulse shape is normalized to have unit energy

Expected energy E of a single passband PAM pulse transmitted in
isolation,

s(t) =
√

2Re
{
s̃(t)e j2πfc t

}
with s̃(t) = ag(t):

E = E [
∫∞
−∞ s2(t)dt]

= E [
∫∞
−∞ |̃s(t)|2dt]

= E [|a|2]
∫∞
−∞ g(t)2dt

= 1
|A|
∑

a∈A|a|2



5.2.2. Constellations

Power: Leave output



5.2.2. Constellations

Alphabet Design
Distance between points in a constellation determines the
likelihood that one point will be confused with another

Minimum distance dmin between two points key parameter of the
constellation

Two constellations can be considered to have the approximately
the same noise immunity if the minimum distance dmin is the same.

To make dmin the same for constellations with different number of
points, higher point constellations require more transmit power

Either a power or an error-probability penalty associated with using
larger constellations



5.2.2. Constellations

Objective of signal constellation design → maximize distance
between symbols while not exceeding power constraint

Optimal constellations difficult to derive or costly to implement



5.2.2. Constellations

Assume average power constraint

Performance of a constellation depends only on distances among
symbols → performance of constellation invariant under translation

Should translate a constellation so that its power is minimized

Power minimized if it has zero mean



5.2.2. Constellations

Given a set of symbols {ai}, translate with complex number m
such that the power

E [|a−m|2] =
M∑
i=1

pa(ai )|ai −m|2

of translated symbol set {ai −m} is minimized

Best choice for translation: m = E [a]



5.2.2. Constellations

Proof:

for any other transformation n

E [|a− n|2] = E [|(a−m) + (m − n)|2]
= E [|a−m|2] + 2Re{(m − n)∗(E [a]−m)}+ |m − n|2
= E [|a−m|2] + |m − n|2

Mean energy under translation n is larger than mean energy under
translation m by |m − n|2



5.2.2. Constellations

Problem of optimal design of constellation is complicated



5.2.2. Constellations

QAM → Square → M = 2b, b even → Fig. 5-13

QAM → M = 2b, b odd → Fig. 5-14

PSK and PSK + amplitude modulation → Fig. 5-15

Hexagonal constellations → Fig 5-16 (Hexagonal refer to shape of
decision regions)



5.2.2. Constellations

PSK

2-PSK → binary phase-shift keying (BPSK)

4-PSK → QPSK / 4-QAM

M elements of M-PSK:

a =
√
Ee j2πm/M , for m ∈ {0, . . . ,M − 1}

Pure PSK → constant envelope → robust against amplifier
nonlinearities



5.2.3. Spectral Efficiency

Bit rate Rb → log2|A| ×
1

T

Spectral efficiency ν = Rb/bandwidth

Difference between baseband PAM and passband PAM is
relationship between symbol rate and bandwidth

Passband → bandwidth W → maximal symbol rate is W

Due to bandwidth of passband PAM signal being twice bandwidth
of pulse shape (upconversion process)

ν =
Rb

W
=

log2|A|
1 + α



5.2.3. Spectral Efficiency

Passband PAM lower spectral efficiency than baseband PAM
baseband

Complex alphabet (Passband) is much larger than real alphabet
(baseband)

If using QAM and transmit L levels on each of the two quadrature
carriers:

ν = log2 L
2 = 2 · log2 L bits / sec-Hz

Same as for baseband PAM with L levels


