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Overview



Introduction

Convert output of a signal source into a sequence of binary digits

Now consider transmission of digital information sequence over
communication channels characterized as additive white Gaussian
noise channels

AWGN channel → one of the simplest mathematical models for
various physical communication channels

Most channels are analog channels → digital information sequence
mapped into analog signal waveforms



Introduction

Focus on:

• characterization, and

• design

of analog signal waveforms that carry digital information and
performance on an AWGN channels

Consider both baseband and passband signals.

Baseband → no need for carrier

passband channel → information-bearing signal impressed on a
sinusoidal carrier



7.4.Multidimensional Signal Waveforms

Previous section → signal waveforms in two dimensions

Consider design of a set of M = 2k signal waveforms having more
than two dimensions

First, consider M mutually orthogonal signal waveforms (each
waveform has dimension N = M)



7.4.1. Orthogonal Signal Waveforms -
baseband

Fig. 7.24. → 2 sets of M = 4 orthogonal signal waveforms

set of K baseband signal waveforms → Gram-Schmidt → M ≤ K
mutually orthogonal signal waveforms

M signal waveforms are simply the orthonormal signal waveforms
ψi , i = 1, 2, . . . ,M obtained from Gram-Schmidt procedure



7.4.1. Orthogonal Signal Waveforms -
baseband

When M orthogonal signal waveforms are nonoverlapping in time
→ digital information conveyed by time interval (PPM)

sm(t) = AgT (t − (m − 1)T/M),
m = 1, 2, , . . . ,M
(m − 1)T/M ≤ t ≤ mT/M

gT (t) signal pulse of duration T/M

Practical reasons → all M signal waveforms have same energy



7.4.1. Orthogonal Signal Waveforms -
baseband

Example → M PPM signals, all signals have amplitude A:∫ T
0 s2m(t)dt =

∫ mT/M
(m−1)T/M g2

T (t − (m − 1)T/M)dt

= A2
∫ T/M
0 g2

T (t)dt
= Es , all m



7.4.1. Orthogonal Signal Waveforms -
baseband

Geometric representation for PPM → M basis functions:

ψm(t) =

{
1√
E g(t − (m − 1)T/M), (m − 1)T/M ≤ t ≤ mT/M

0, otherwise

M-ary PPM signal waveforms are represented geometrically by the
M-dimensional vectors:

s1 = (
√
Es , 0, 0, . . . , 0)

s2 = (0,
√
Es , 0, . . . , 0)

...
...

sM = (0, 0, 0, . . . ,
√
Es)



7.4.1. Orthogonal Signal Waveforms -
baseband

si and sj orthogonal → si · sj = 0

M signal vectors are mutually equidistant, i.e.,

dmn =
√
||sm − sn||2 =

√
2Es ,∀ m 6= n



7.4.1. Orthogonal Signal Waveforms -
bandpass Signals

Bandpass orthogonal signals → set of baseband orthogonal
waveforms sm(t),m = 1, 2, . . . ,M multiplied with carrier cos 2πfct

Thus:

um(t) = sm(t) cos(2πfct),
m = 1, 2, . . . ,M
0 ≤ t ≤ T

Energy in each of the bandpass signal waveforms is one-half of the
energy of the corresponding baseband signal waveforms



7.4.1. Orthogonal Signal Waveforms -
bandpass Signals

Orthogonality:

∫ T
0 um(t)un(t) =

∫ T
0 sm(t)sn(t) cos2 2πfctdt

= 1
2

∫ T
0 sm(t)sn(t)dt + 1

2

∫ T
0 sm(t)sn(t)cos4πfctdt

= 0

fc � bandwidth baseband signals



7.4.1. Orthogonal Signal Waveforms -
bandpass Signals

M-ary PPM signals achieve orthogonality in time domain by means
of nonoverlapping pulses

Alternative → construct a set of M carrier-modulated signals
which achieve orthogonality in frequency domain →
carrier-frequency modulation

Simplest form → frequency-shift keying



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying

Simplest form of frequency modulation → binary frequency-shift
keying

Use f1 and f2 = f1 + ∆f to convey binary data

u1(t) =

√
2Eb
Tb

cos 2πf1t, 0 ≤ t ≤ Tb

u2(t) =

√
2Eb
Tb

cos 2πf2t, 0 ≤ t ≤ Tb



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying

M-ary FSK→ transmit a block of k = log2M bits/signal waveform

um(t) =

√
2Es
T

cos(2πfct + 2πm∆ft), m = 0, 1, . . . ,M − 1

M frequency waveforms have equal energy Es

Frequency separation ∆f determines the degree to which we can
discriminate among the M possible signals.



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying

Measure of similarity → correlation coefficients γmn

γmn =
1

Es

∫ T

0
um(t)un(t)dt

Substitution:

γmn =
1

Es
∫ T
0

2Es
T

cos(2πfct + 2πm∆ft) cos(2πfct + 2πn∆ft)dt

=
1

T

∫ T
0 cos 2π(m − n)∆ftdt

+
1

T

∫ T
0 cos[4πfct + 2π(m + n)∆ft]dt

=
sin 2π(m − n)∆fT

2π(m − n)∆fT



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying

Refer to Fig. 7.26

Signal waveforms are orthogonal when ∆f is a multiple of
1

2T

Minimum value of the correlation coefficient is γmn = −0.217, for
∆f = 0.715



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying

M-ary orthogonal FSK waveforms have a geometric representation
as M, M-dimensional orthogonal vectors, given as:

s1 = (
√
Es , 0, 0, . . . , 0)

s2 = (0,
√
Es , 0, . . . , 0)

...
...

sM = (0, 0, 0, . . . ,
√
Es)

with basis functions ψm(t) =

√
2

T
cos 2π(fc + m∆f )t

Distance between pair of signal vectors is d =
√

2Es for all m, n
(minimum distance)



7.4.1. Orthogonal Signal Waveforms -
Frequency-Shift Keying


