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Overview



Introduction

Convert output of a signal source into a sequence of binary digits

Now consider transmission of digital information sequence over
communication channels characterized as additive white Gaussian
noise channels

AWGN channel → one of the simplest mathematical models for
various physical communication channels

Most channels are analog channels → digital information sequence
mapped into analog signal waveforms



Introduction

Focus on:

• characterization, and

• design

of analog signal waveforms that carry digital information and
performance on an AWGN channels

Consider both baseband and passband signals.

Baseband → no need for carrier

passband channel → information-bearing signal impressed on a
sinusoidal carrier



7.1.Geometric Representation of Signal
Waveforms

Gram-Schmidt orthogonalization → construct an orthonormal basis
for a set of signals

Develop a geometric representation of signal waveforms as points
in a signal space

Representation provides a compact characterization of signal sets,
simplifies analysis of performance

Using vector representation, waveform communication channels are
represented by vector channels (reduce complexity of analysis)



7.1.Geometric Representation of Signal
Waveforms

Suppose set of M signal waveforms sm(t), 1 ≤ m ≤ M to be used
for transmitting information over comms channel

From set of M waveforms, construct set of N ≤ M orthonormal
waveforms → N dimension of signal space

Use Gram-Schmidt orthogonalization procedure



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Given first waveform s1(t), with energy E1 → first waveform of the
orthonormal set:

ψ1(t) =
s1(t)√
E1



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Second waveform → constructed from s2(t) by computing the
projection of s2(t) onto ψ1(t):

c21 =

∫ ∞
−∞

s2(t)ψ1(t)dt

Then, c21ψ1(t) is subtracted from s2(t) to yield:

d2(t) = s2(t)− c21ψ1(t)



7.1.1. Gram-Schmidt Orthogonalization
Procedure

d2(t) is orthogonal to ψ1, but energy of d2(t) 6= 1.

ψ2(t) =
d2(t)√
E2

E2 =

∫ ∞
−∞

d2
2 (t)dt



7.1.1. Gram-Schmidt Orthogonalization
Procedure

In general, the orthogonalization of the kth function leads to

ψk(t) =
dk(t)√
Ek

where

dkt = sk(t)−
k−1∑
i=1

ckiψi (t)

Ek =

∫ ∞
−∞

d2
k (t)dt

and

cki =

∫ ∞
−∞

sk(t)ψi (t)dt, i = 1, 2, . . . , k − 1



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Orthogonalization process is continued until all the M signal
waveforms {sm(t)} have been exhausted and N ≤ M orthonormal
waveforms have been constructed

The N orthonormal waveforms {ψn(t)} forms a basis in the
N-dimensional signal space.

Dimensionality N = M if all signal waveforms are linearly
independent.



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Example 7.1.1

Selfstudy



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Can express the M signals {sm(t)} as exact linear combinations of
the {ψn(t)}

sm(t) =
N∑

n=1

smnψn(t), m = 1, 2, . . . ,M

where

smn =

∫ ∞
−∞

sm(t)ψn(t)dt

Em =

∫ ∞
−∞

s2m(t)dt =
N∑

n=1

s2mn

Thus

sm = (sm1, sm2, . . . , smN)



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Energy of the mth signal → square of length of vector or square of
Euclidean distance from origin to point in N-dimensional space.

Inner product of two signals equal to inner product of their vector
representations ∫ ∞

−∞
sm(t)sn(t)dt = sm · sn

Thus, any N-dimensional signal can be represented geometrically
as a point in the signal space spanned by the N orthonormal
functions {ψn(t)}



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Example 7.1.2

Selfstudy



7.1.1. Gram-Schmidt Orthogonalization
Procedure

Set of basis functions {ψn(t)} obtained by Gram-Schmidt
procedure is not unique



7.2. Pulse Amplitude Modulation

Pulse Amplitude Modulation → information conveyed by the
amplitude of the transmitted signal



7.2.1. Baseband Signals

Binary PAM → simplest digital modulation method

Binary 1 → pulse with amplitude A

Binary 0 → pulse with amplitude −A

Also referred to as binary antipodal signalling

Pulses transmitted at a bit rate Rb = 1/Tb bits/sec (Tb → bit
interval)



7.2.1. Baseband Signals

Generalization of PAM to nonbinary (M-ary) pulse transmission
straightforward

Instead of transmitting one bit at a time, binary information
sequence is subdivided into blocks of k bits → symbol

Each symbol represented by one of M = 2k pulse amplitude values

k = 2 → M = 4 pulse amplitude values

When bitrate Rb is fixed, symbol interval

T =
k

Rb
= kTb



7.2.1. Baseband Signals

In general M-ary PAM signal waveforms may be expressed as

sm(t) = AmgT (t), m = 1, 2, . . . ,M, 0 ≤ t ≤ T

where gT (t) is a pulse of some arbitrary shape (example → Fig.
7.7.)

Distinguishing feature among the M signals is the signal amplitude

All the M signals have the same pulse shape



7.2.1. Baseband Signals

Another important feature → energies

Em =
∫ T
0 s2m(t)dt

= A2
m

∫ T
0 g2

T (t)dt
= A2

mEg , m = 1, 2, . . . ,M

Eg is the energy of the signal pulse gT (t)



7.2.2. Bandpass Signals

To transmit digital waveforms through a bandpass channel by
amplitude modulation, the baseband signal waveforms
sm(t), m = 1, 2, . . . ,M are multiplied by a sinusoidal carrier of the
form cos 2πfct

Baseband signal Bandpass signal

sm(t) sm(t) cos 2πfct

Carrier

cos 2πfct



7.2.2. Bandpass Signals

Transmitted signal waveforms:

um(t) = AmgT (t) cos 2πfct, m = 1, 2, . . . ,M

Amplitude modulation → shifts the spectrum of the baseband
signal by an amount fc → places signal into passband of the
channel

Fourier transform of carrier: [δ(f − fc) + δ(f + fc)] /2



7.2.2. Bandpass Signals

Spectrum of amplitude-modulated signal

Um(t) =
Am

2
[GT (f − fc) + GT (f + fc)]

Spectrum of baseband signal sm(t) = AmgT (t) is shifted in
frequency by amount fc

Result → DSB-SC AM → Fig. 7.9

Upper sideband → frequency content of um(t) for
fc < |f | ≤ fc + W

Lower sideband → frequency content of um(t) for
fc −W ≤ |f | < fc

um(t) → bandwidth = 2W → twice bandwidth of baseband signal



7.2.2. Bandpass Signals

Energy of bandpass signal waveforms um(t), m = 1, 2, . . . ,M

Em =
∫∞
−∞ u2m(t)dt

=
∫∞
−∞ A2

mg
2
T (t) cos2 2πfct dt

=
A2
m

2

∫∞
−∞ g2

T (t) dt +
A2
m

2

∫∞
−∞ g2

T (t) cos 4πfct dt

When fc �W ∫ ∞
−∞

g2
T (t) cos 4πfct dt = 0

Thus,

Em =
A2
m

2

∫ ∞
−∞

g2
T (t) =

A2
m

2
Eg



7.2.2. Bandpass Signals

Eg → energy in the signal gT (t)

Energy in bandpass signal is one-half of the energy of the baseband
signal

Assume gT (t)

gT (T ) =

{ √
Eg
T 0 ≤ t < T

0, otherwise

⇒ amplitude-shift keyeing (ASK)



7.2.3. Geometric Representation of PAM
Signals

Baseband signals for M-ary PAM → sm(t) = amgT (t), M = 2k ,
gT (t) pulse with peak amplitude normalized to unity

M-ary PAM waveforms are one-dimensional signals, expressed as

sm(t) = smψ(t), m = 1, 2, . . . ,M

basis function ψ(t)

ψ(t) =
1√
Eg

gT (t), 0 ≤ t ≤ T

Eg → energy of signal pulse gT (t)



7.2.3. Geometric Representation of PAM
Signals

signal coefficients → one-dimensional vectors

sm =
√
EgAm, m = 1, 2, . . . ,M

Important parameter → Euclidean distance between two signal
points:

dmn =
√
|sm − sn|2 =

√
Eg (Am − An)2

{Am} symmetrically spaced about zero and equally distant
between adjacent signal amplitudes → symmetric PAM

Refer to Fig 7.11



7.2.3. Geometric Representation of PAM
Signals

PAM signals have different energies.

Energy of mth signal

Em = s2m = EgA2
m, m = 1, 2, . . . ,M

Equally probable signals, average energy is given as:

Eav =
1

M

M∑
m=1

Em =
Eg
M

M∑
m=1

A2
m



7.2.3. Geometric Representation of PAM
Signals

If signal amplitudes are symmetric about origin

Am = (2m − 1−M), m = 1, 2, . . . ,M

Average energy

Eav =
Eg
M

M∑
m=1

(2m − 1−M)2 = Eg (M2 − 1)/3



7.2.3. Geometric Representation of PAM
Signals

When baseband PAM impressed on a carrier, basic geometric
representation of the digital PAM signal waveforms remain the
same

Bandpass signal waveforms um(t) expressed as

um(t) = smψ(t)

where

ψ(t) =

√
2

Eg
gT (t) cos 2πfct

and

sm =

√
Eg
2
Am, m = 1, 2, . . . ,M



7.3.Two-Dimensional Signal Waveforms

PAM signal waveforms are basically one-dimensional signals

Now consider the construction of two-dimensional signals



7.3.1 Baseband Signals

Two signal waveforms s1(t) and s2(t) orthogonal over interval
(0,T ) if ∫ T

0
s1(t)s2(t)dt = 0

Fig. 7.12 → two examples

E =
∫ T
0 s21 (t)dt =

∫ T
0 s22 (t)dt =

∫ T
0 [s ′1]2(t)dt =

∫ T
0 [s ′2]2(t)dt

= A2T

Either pair of these signals may be used to transmit binary
information, one signal waveform → 1, the other waveform → 0



7.3.1 Baseband Signals

Geometrically, signal waveforms represented as signal vectors in
two-dimensional space

One choice, select unit energy, rectangular functions

ψ1(t) =

{ √
2/T , 0 ≤ t ≤ T/2

0, otherwise

ψ2(t) =

{ √
2/T , T/2 < t ≤ T

0, otherwise



7.3.1 Baseband Signals

Signal waveforms s1(t) and s2(t) expressed as

s1(t) = s11ψ1(t) + s12ψ2(t)
s2(t) = s21ψ2(t) + s22ψ2t

where

s1 = (s11, s12) = (A
√
T/2,A

√
T/2)

s2 = (s21, s22) = (A
√
T/2,−A

√
T/2)

Fig 7.13 → plot of s1 and s2

Signals are separated by 90o → orthogonal



7.3.1 Baseband Signals

Square of length of each vector gives the energy in each signal

E1 = ||s1||2 = A2T
E2 = ||s2||2 = A2T

Euclidean distance between two signals is

d12 =
√
||s1 − s2||2 = A

√
2T =

√
2A2T =

√
2E

E1 = E2 = E → signal energy



7.3.1 Baseband Signals

Similarly:

s1
′ = (A

√
T , 0) = (

√
E , 0)

s2
′ = (0,A

√
T ) = (0,

√
E)

Euclidean distance between s1
′ and s2

′ identical to that of s1 and
s2



7.3.1 Baseband Signals

Suppose we wish to construct four signal waveforms in two
dimensions

Four signal waveforms → transmit 2 bits in signalling interval of
length T

use −s1 and −s2

Obtain 4-point signal constellation → Fig. 7.15

s1(t) and s2(t) orthogonal, plus −s1(t) and −s2(t) orthogonal →
biorthogonal signals



7.3.1 Baseband Signals

Procedure for constructing a larger set of signal waveforms
relatively straightforward

add additional signal points (signal vectors) in two-dimensional
plane, construct corresponding waveforms by using the two
orthonormal basis functions ψ1(t) and ψ2(t)

Suppose construct M = 8 two-dimensional signal waveforms, all of
equal energy E .

Fig. 7.16 → constellation diagram

Transmit 3 bits at a time



7.3.1 Baseband Signals

Remove condition that all 8 waveforms have equal energy

Example: select 4 biorthogonal waveforms with energy E1 and
another 4 biorthogonal waveforms with energy E2 (E2 > E1)

Refer to Fig. 7.17



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Bandpass PAM → set of baseband signals impressed on carrier

Similarly, set of M two-dimensional signal waveforms
sm(t), m = 1, 2, . . . ,M create a set of bandpass signal waveforms

um(t) = sm(t) cos 2πfct, m = 1, 2, . . . ,M, 0 ≤ t ≤ T



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Consider special case in which M two-dimensional bandpass signal
waveforms constrained to have same energy:

Em =
∫ T
0 u2m(t)dt

=
∫ T
0 s2m(t) cos2 2πfctdt

= 1
2

∫ T
0 s2m(t)dt + 1

2

∫ T
0 s2m(t) cos 4πfctdt

= 1
2

∫ T
0 s2m(t)dt

= Es , for all m

When all signal waveforms have same energy, corresponding signal
points fall on circle with radius

√
Es

Fig. 7.15 → example of constellation with M = 4



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Signal points equivalent to a single signal whose phase is shifted →
carrier-phase modulated signal

um(t) = gT (t) cos

(
2πfct +

2πm

M

)
, M = 0, 1, . . . ,M − 1,



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

When gT (t) rectangular pulse

gT (t) =

√
2Es
T
, 0 ≤ t ≤ T

Corresponding transmitted signal waveforms

um(t) =

√
2Es
T

cos

(
2πfct +

2πm

M

)
,

has constant envelope, carrier phase changes abruptly at beginning
of each signal interval

⇒ phase-shift keyeing (PSK)

Fig 7.18. QPSK signal waveform



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Can rewrite carrier-phase modulated signal equation as

um(t) = gT (t)Amc cos 2πfct − gT (t)Ams sin 2πfct

where

Amc = cos 2πm/M
Ams = sin 2πm/M

Phase-modulated signal may be viewed as two quadrature carriers
with amplitudes gT (t)Amc and gT (t)Ams (Fig. 7.19)



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Thus, digital phase-modulated signals can be represented
geometrically as two-dimensional vectors

sm = (
√
Es cos 2πm/M,

√
Es sin 2πm/M)

Orthogonal basis functions are

ψ1(t) =

√
2

Eg
gT (t) cos 2πfct

ψ2(t) = −
√

2

Eg
gT (t) sin 2πfct

Fig. 7.20 → signal point constellations for M = 2,4,8



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Mapping or assignment of k information bits into the M = 2k

possible changes may be done in number of ways

Preferred mapping → Gray encoding (Fig. 7.20)

Most likely errors caused by noise → selection of an adjacent phase
to transmitted phase → single bit error



7.3.2 Two-dimensional Bandpass Signals -
Carrier-Phase Modulation

Euclidean distance between any two signal points in constellation

dmn =
√
||sm − sn||2

=

√
2Es

(
1− cos

2π(m − n)

M

)
Minimum Euclidean distance (distance between two adjacent
signal points)

dmin =

√
2Es

(
1− cos

2π

M

)
dmin → determine error-rate performance of receiver in AWGN



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

When Es not equal for every symbol, we can impress separate
information “bits” on each of the quadrature carriers (cos 2πfct
and sin 2πfct) → Quadrature Amplitude Modulation (QAM)

Form of quadrature-carrier multiplexing

um(t) = AmcgT (t) cos 2πfct+AmsgT (t)sin2πfct, m = 1, 2, . . . ,M

{Amc} and {Ams} are the sets of amplitude levels obtained by
mapping k-bit sequences into signal amplitudes.



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

Fig. 7.21 → 16-QAM → amplitude modulating each quadrature
carrier by M = 4 PAM

QAM → combined digital-amplitude and digital-phase modulation

umn(t) = AmgT (t) cos(2πfct + θn), m = 1, 2, . . . ,M1,
n = 1, 2, . . . ,M2

If M1 = 2k1 and M2 = 2k2 →

k1 + k2 = log2(M1 ×M2) bits, at
symbol rate Rb/(k1 + k2)



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

Fig. 7.21 → 16-QAM → amplitude modulating each quadrature
carrier by M = 4 PAM

QAM → combined digital-amplitude and digital-phase modulation

umn(t) = AmgT (t) cos(2πfct + θn), m = 1, 2, . . . ,M1,
n = 1, 2, . . . ,M2

If M1 = 2k1 and M2 = 2k2 → k1 + k2 = log2(M1 ×M2) bits, at
symbol rate Rb/(k1 + k2)



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

Fig. 7.22. → Functional block diagram of modulator for QAM



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

Geometric signal representation of the signals:

sm = (
√
EsAmc ,

√
EsAms)

Fig. 7.23 → Examples of signal space constellations for QAM.

Average transmitted energy → sum of the average energies on
each of the quadrature carriers



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

For rectangular signal constellations, average energy/symbol

Eav =
1

M

M∑
i=1

||si ||2



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation

Euclidean distance

dmn =
√
||sm − sn||2



7.3.3 Two-dimensional Bandpass Signals -
Quadrature Amplitude Modulation


