Digital Transmission through the Additive White Gaussian Noise Channel

ELEN 3024 - Communication Fundamentals

School of Electrical and Information Engineering, University of the Witwatersrand

July 15, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Digital Transmission Through the AWGN Channel

Proakis and Salehi, "Communication Systems Engineering" (2nd Ed.), Chapter 7

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Overview

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convert output of a signal source into a sequence of binary digits

Now consider transmission of digital information sequence over communication channels characterized as additive white Gaussian noise channels

AWGN channel \rightarrow one of the simplest mathematical models for various physical communication channels

Most channels are analog channels \rightarrow digital information sequence mapped into analog signal waveforms

Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Focus on:

- characterization, and
- design

of analog signal waveforms that carry digital information and performance on an AWGN channels

Consider both baseband and passband signals.

 $\mathsf{Baseband} \to \mathsf{no} \ \mathsf{need} \ \mathsf{for} \ \mathsf{carrier}$

passband channel \rightarrow information-bearing signal impressed on a sinusoidal carrier

7.1.Geometric Representation of Signal Waveforms

 $\mathsf{Gram}\text{-}\mathsf{Schmidt}$ orthogonalization \rightarrow construct an orthonormal basis for a set of signals

Develop a geometric representation of signal waveforms as points in a signal space

Representation provides a compact characterization of signal sets, simplifies analysis of performance

Using vector representation, waveform communication channels are represented by vector channels (reduce complexity of analysis)

7.1.Geometric Representation of Signal Waveforms

Suppose set of *M* signal waveforms $s_m(t)$, $1 \le m \le M$ to be used for transmitting information over comms channel

From set of M waveforms, construct set of $N \le M$ orthonormal waveforms $\rightarrow N$ dimension of signal space

Use Gram-Schmidt orthogonalization procedure

Given first waveform $s_1(t)$, with energy $\mathcal{E}_1 \rightarrow$ first waveform of the orthonormal set:

$$\psi_1(t) = rac{s_1(t)}{\sqrt{\mathcal{E}_1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Second waveform \rightarrow constructed from $s_2(t)$ by computing the projection of $s_2(t)$ onto $\psi_1(t)$:

$$c_{21} = \int_{-\infty}^{\infty} s_2(t)\psi_1(t)dt$$

Then, $c_{21}\psi_1(t)$ is subtracted from $s_2(t)$ to yield:

$$d_2(t) = s_2(t) - c_{21}\psi_1(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $d_2(t)$ is orthogonal to ψ_1 , but energy of $d_2(t) \neq 1$.

$$\psi_2(t) = rac{d_2(t)}{\sqrt{\mathcal{E}_2}}$$

$$\mathcal{E}_2 = \int_{-\infty}^{\infty} d_2^2(t) dt$$

(ロ)、(型)、(E)、(E)、 E) の(の)

In general, the orthogonalization of the kth function leads to

$$\psi_k(t) = \frac{d_k(t)}{\sqrt{\mathcal{E}_k}}$$

where

$$egin{aligned} &d_kt = s_k(t) - \sum_{i=1}^{k-1} c_{ki}\psi_i(t) \ &\mathcal{E}_k = \int_{-\infty}^\infty d_k^2(t)dt \end{aligned}$$

and

$$c_{ki} = \int_{-\infty}^{\infty} s_k(t) \psi_i(t) dt, \ i = 1, 2, \dots, k-1$$

Orthogonalization process is continued until all the M signal waveforms $\{s_m(t)\}$ have been exhausted and $N \leq M$ orthonormal waveforms have been constructed

The *N* orthonormal waveforms $\{\psi_n(t)\}\$ forms a basis in the *N*-dimensional signal space.

Dimensionality N = M if all signal waveforms are linearly independent.

Example 7.1.1

Selfstudy

Can express the M signals $\{s_m(t)\}$ as exact linear combinations of the $\{\psi_n(t)\}$

$$s_m(t) = \sum_{n=1}^N s_{mn} \psi_n(t), \ m = 1, 2, \dots, M$$

where

$$s_{mn} = \int_{-\infty}^{\infty} s_m(t)\psi_n(t)dt$$
$$\mathcal{E}_m = \int_{-\infty}^{\infty} s_m^2(t)dt = \sum_{n=1}^{N} s_{mn}^2$$

Thus

$$\mathbf{s_m} = (s_{m1}, s_{m2}, \dots, s_{mN})$$

Energy of the *m*th signal \rightarrow square of length of vector or square of Euclidean distance from origin to point in *N*-dimensional space.

Inner product of two signals equal to inner product of their vector representations

$$\int_{-\infty}^{\infty} s_m(t) s_n(t) dt = \mathbf{s_m} \cdot \mathbf{s_n}$$

Thus, any *N*-dimensional signal can be represented geometrically as a point in the signal space spanned by the *N* orthonormal functions $\{\psi_n(t)\}$

Example 7.1.2

Selfstudy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Set of basis functions $\{\psi_n(t)\}$ obtained by Gram-Schmidt procedure is not unique

7.2. Pulse Amplitude Modulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pulse Amplitude Modulation \rightarrow information conveyed by the amplitude of the transmitted signal

Binary PAM \rightarrow simplest digital modulation method

Binary $1 \rightarrow$ pulse with amplitude A

Binary 0 \rightarrow pulse with amplitude -A

Also referred to as binary antipodal signalling

Pulses transmitted at a bit rate $R_b = 1/T_b$ bits/sec ($T_b \rightarrow$ bit interval)

Generalization of PAM to nonbinary (M-ary) pulse transmission straightforward

Instead of transmitting one bit at a time, binary information sequence is subdivided into blocks of k bits \rightarrow symbol

Each symbol represented by one of $M = 2^k$ pulse amplitude values

 $k = 2 \rightarrow M = 4$ pulse amplitude values

When bitrate R_b is fixed, symbol interval

$$T = \frac{k}{R_b} = kT_b$$

In general *M*-ary PAM signal waveforms may be expressed as

$$s_m(t) = A_m g_T(t), \ m = 1, 2, \dots, M, \ 0 \leq t \leq T$$

where $g_T(t)$ is a pulse of some arbitrary shape (example \rightarrow Fig. 7.7.)

Distinguishing feature among the M signals is the signal amplitude

All the M signals have the same pulse shape

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Another important feature \rightarrow energies

$$\begin{aligned} \mathcal{E}_m &= \int_0^T s_m^2(t) dt \\ &= A_m^2 \int_0^T g_T^2(t) dt \\ &= A_m^2 \mathcal{E}_g, \qquad m = 1, 2, \dots, M \end{aligned}$$

 \mathcal{E}_g is the energy of the signal pulse $g_{\mathcal{T}}(t)$

To transmit digital waveforms through a bandpass channel by amplitude modulation, the baseband signal waveforms $s_m(t), m = 1, 2, ..., M$ are multiplied by a sinusoidal carrier of the form $\cos 2\pi f_c t$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Transmitted signal waveforms:

$$u_m(t) = A_m g_T(t) \cos 2\pi f_c t, \quad m = 1, 2, \dots, M$$

Amplitude modulation \rightarrow shifts the spectrum of the baseband signal by an amount $f_c \rightarrow$ places signal into passband of the channel

Fourier transform of carrier: $\left[\delta(f - f_c) + \delta(f + f_c)\right]/2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectrum of amplitude-modulated signal

$$U_m(t) = \frac{A_m}{2} \left[G_T(f - f_c) + G_T(f + f_c) \right]$$

Spectrum of baseband signal $s_m(t) = A_m g_T(t)$ is shifted in frequency by amount f_c

Result \rightarrow DSB-SC AM \rightarrow Fig. 7.9

Upper sideband \rightarrow frequency content of $u_m(t)$ for $f_c < |f| \le f_c + W$

Lower sideband \rightarrow frequency content of $u_m(t)$ for $f_c - W \leq |f| < f_c$

 $u_m(t)
ightarrow$ bandwidth = 2W
ightarrow twice bandwidth of baseband signal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Energy of bandpass signal waveforms $u_m(t), m = 1, 2, ..., M$

$$\begin{aligned} \mathcal{E}_m &= \int_{-\infty}^{\infty} u_m^2(t) dt \\ &= \int_{-\infty}^{\infty} A_m^2 g_T^2(t) \cos^2 2\pi f_c t \, dt \\ &= \frac{A_m^2}{2} \int_{-\infty}^{\infty} g_T^2(t) \, dt + \frac{A_m^2}{2} \int_{-\infty}^{\infty} g_T^2(t) \cos 4\pi f_c t \, dt \end{aligned}$$

When $f_c \gg W$

$$\int_{-\infty}^{\infty} g_T^2(t) \cos 4\pi f_c t \, dt = 0$$

Thus,

$$\mathcal{E}_m = rac{A_m^2}{2} \int_{-\infty}^{\infty} g_T^2(t) = rac{A_m^2}{2} \mathcal{E}_g$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{E}_g
ightarrow$ energy in the signal $g_T(t)$

Energy in bandpass signal is one-half of the energy of the baseband signal

Assume $g_T(t)$

$$g_{\mathcal{T}}(\mathcal{T}) = \left\{ egin{array}{cc} \sqrt{rac{\mathcal{E}_g}{\mathcal{T}}} & 0 \leq t < \mathcal{T} \ 0, & ext{otherwise} \end{array}
ight.$$

 \Rightarrow amplitude-shift keyeing (ASK)

Baseband signals for *M*-ary PAM $\rightarrow s_m(t) = a_m g_T(t)$, $M = 2^k$, $g_T(t)$ pulse with peak amplitude normalized to unity

M-ary PAM waveforms are one-dimensional signals, expressed as

$$s_m(t) = s_m \psi(t), \ m = 1, 2, \dots, M$$

basis function $\psi(t)$

$$\psi(t) = rac{1}{\sqrt{\mathcal{E}_g}} g_T(t), \ 0 \leq t \leq T$$

 $\mathcal{E}_g
ightarrow$ energy of signal pulse $g_{\mathcal{T}}(t)$

signal coefficients \rightarrow one-dimensional vectors

$$s_m = \sqrt{\mathcal{E}_g} A_m, \ m = 1, 2, \dots, M$$

Important parameter \rightarrow Euclidean distance between two signal points:

$$d_{mn} = \sqrt{|s_m - s_n|^2} = \sqrt{\mathcal{E}_g(A_m - A_n)^2}$$

 $\{A_m\}$ symmetrically spaced about zero and equally distant between adjacent signal amplitudes \rightarrow symmetric PAM

Refer to Fig 7.11

PAM signals have different energies.

Energy of *m*th signal

$$\mathcal{E}_m = s_m^2 = \mathcal{E}_g A_m^2, \quad m = 1, 2, \dots, M$$

Equally probable signals, average energy is given as:

$$\mathcal{E}_{av} = rac{1}{M} \sum_{m=1}^{M} \mathcal{E}_m = rac{\mathcal{E}_g}{M} \sum_{m=1}^{M} A_m^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If signal amplitudes are symmetric about origin

$$A_m = (2m - 1 - M), m = 1, 2, \dots, M$$

Average energy

$$\mathcal{E}_{av} = \frac{\mathcal{E}_g}{M} \sum_{m=1}^{M} (2m - 1 - M)^2 = \mathcal{E}_g (M^2 - 1)/3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When baseband PAM impressed on a carrier, basic geometric representation of the digital PAM signal waveforms remain the same

Bandpass signal waveforms $u_m(t)$ expressed as

$$u_m(t) = s_m \psi(t)$$

where

$$\psi(t) = \sqrt{\frac{2}{\mathcal{E}_g}} g_T(t) \cos 2\pi f_c t$$

and

$$s_m = \sqrt{\frac{\mathcal{E}_g}{2}} A_m, \quad m = 1, 2, \dots, M$$

7.3. Two-Dimensional Signal Waveforms

PAM signal waveforms are basically one-dimensional signals

Now consider the construction of two-dimensional signals

Two signal waveforms $s_1(t)$ and $s_2(t)$ orthogonal over interval (0, T) if

$$\int_0^T s_1(t) s_2(t) dt = 0$$

Fig. 7.12 \rightarrow two examples

$$\mathcal{E} = \int_0^T s_1^2(t) dt = \int_0^T s_2^2(t) dt = \int_0^T [s_1']^2(t) dt = \int_0^T [s_2']^2(t) dt$$

= $A^2 T$

Either pair of these signals may be used to transmit binary information, one signal waveform \rightarrow 1, the other waveform \rightarrow 0

Geometrically, signal waveforms represented as signal vectors in two-dimensional space

One choice, select unit energy, rectangular functions

$$\psi_1(t) = \begin{cases} \sqrt{2/T}, & 0 \le t \le T/2 \\ 0, & \text{otherwise} \end{cases}$$

 $\psi_2(t) = \begin{cases} \sqrt{2/T}, & T/2 < t \le T \\ 0, & \text{otherwise} \end{cases}$

Signal waveforms $s_1(t)$ and $s_2(t)$ expressed as

$$\begin{array}{rcl} s_1(t) &=& s_{11}\psi_1(t) + s_{12}\psi_2(t) \\ s_2(t) &=& s_{21}\psi_2(t) + s_{22}\psi_2t \end{array}$$

where

$$\mathbf{s_1} = (s_{11}, s_{12}) = (A\sqrt{T/2}, A\sqrt{T/2}) \\ \mathbf{s_2} = (s_{21}, s_{22}) = (A\sqrt{T/2}, -A\sqrt{T/2})$$

Fig 7.13 \rightarrow plot of s_1 and s_2

Signals are separated by $90^o \rightarrow$ orthogonal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Square of length of each vector gives the energy in each signal

$$\mathcal{E}_1 = ||\mathbf{s_1}||^2 = A^2 T$$

$$\mathcal{E}_2 = ||\mathbf{s_2}||^2 = A^2 T$$

Euclidean distance between two signals is

$$d_{12} = \sqrt{||\mathbf{s_1} - \mathbf{s_2}||^2} = A\sqrt{2T} = \sqrt{2A^2T} = \sqrt{2E}$$

 $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \to \mathsf{signal} ~\mathsf{energy}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Similarly:

$$\begin{aligned} \mathbf{s_1}' &= (A\sqrt{T}, \mathbf{0}) = (\sqrt{\mathcal{E}}, \mathbf{0}) \\ \mathbf{s_2}' &= (\mathbf{0}, A\sqrt{T}) = (\mathbf{0}, \sqrt{\mathcal{E}}) \end{aligned}$$

Euclidean distance between $s_1{}^\prime$ and $s_2{}^\prime$ identical to that of s_1 and s_2

Suppose we wish to construct four signal waveforms in two dimensions

Four signal waveforms \rightarrow transmit 2 bits in signalling interval of length ${\cal T}$

use $-s_1$ and $-s_2$

Obtain 4-point signal constellation \rightarrow Fig. 7.15

 $s_1(t)$ and $s_2(t)$ orthogonal, plus $-s_1(t)$ and $-s_2(t)$ orthogonal o biorthogonal signals

Procedure for constructing a larger set of signal waveforms relatively straightforward

add additional signal points (signal vectors) in two-dimensional plane, construct corresponding waveforms by using the two orthonormal basis functions $\psi_1(t)$ and $\psi_2(t)$

Suppose construct M = 8 two-dimensional signal waveforms, all of equal energy \mathcal{E} .

Fig. 7.16 \rightarrow constellation diagram

Transmit 3 bits at a time

Remove condition that all 8 waveforms have equal energy

Example: select 4 biorthogonal waveforms with energy \mathcal{E}_1 and another 4 biorthogonal waveforms with energy \mathcal{E}_2 ($\mathcal{E}_2 > \mathcal{E}_1$)

Refer to Fig. 7.17

Bandpass PAM \rightarrow set of baseband signals impressed on carrier

Similarly, set of M two-dimensional signal waveforms $s_m(t), m = 1, 2, ..., M$ create a set of bandpass signal waveforms

$$u_m(t) = s_m(t) \cos 2\pi f_c t, \ m = 1, 2, \dots, M, \ 0 \le t \le T$$

Consider special case in which M two-dimensional bandpass signal waveforms constrained to have same energy:

$$\begin{aligned} \mathcal{E}_m &= \int_0^T u_m^2(t) dt \\ &= \int_0^T s_m^2(t) \cos^2 2\pi f_c t dt \\ &= \frac{1}{2} \int_0^T s_m^2(t) dt + \frac{1}{2} \int_0^T s_m^2(t) \cos 4\pi f_c t dt \\ &= \frac{1}{2} \int_0^T s_m^2(t) dt \\ &= \mathcal{E}_s, \text{ for all } m \end{aligned}$$

When all signal waveforms have same energy, corresponding signal points fall on circle with radius $\sqrt{\mathcal{E}_s}$

Fig. 7.15 \rightarrow example of constellation with M = 4

Signal points equivalent to a single signal whose phase is shifted \rightarrow carrier-phase modulated signal

$$u_m(t) = g_T(t) \cos\left(2\pi f_c t + \frac{2\pi m}{M}\right), \quad M = 0, 1, \dots, M - 1,$$

When $g_T(t)$ rectangular pulse

$$g_{\mathcal{T}}(t) = \sqrt{rac{2\mathcal{E}_s}{T}}, \ 0 \leq t \leq T$$

Corresponding transmitted signal waveforms

$$u_m(t) = \sqrt{\frac{2\mathcal{E}_s}{T}} \cos\left(2\pi f_c t + \frac{2\pi m}{M}\right),$$

has constant envelope, carrier phase changes abruptly at beginning of each signal interval

 \Rightarrow phase-shift keyeing (PSK)

Fig 7.18. QPSK signal waveform

Can rewrite carrier-phase modulated signal equation as

$$u_m(t) = g_T(t) A_{mc} \cos 2\pi f_c t - g_T(t) A_{ms} \sin 2\pi f_c t$$

where

$$A_{mc} = \cos 2\pi m/M$$

 $A_{ms} = \sin 2\pi m/M$

Phase-modulated signal may be viewed as two quadrature carriers with amplitudes $g_T(t)A_{mc}$ and $g_T(t)A_{ms}$ (Fig. 7.19)

Thus, digital phase-modulated signals can be represented geometrically as two-dimensional vectors

$$\mathbf{s_m} = (\sqrt{\mathcal{E}_s} \cos 2\pi m/M, \sqrt{\mathcal{E}_s} \sin 2\pi m/M)$$

Orthogonal basis functions are

$$\psi_1(t) = \sqrt{\frac{2}{\mathcal{E}_g}} g_T(t) \cos 2\pi f_c t$$
$$\psi_2(t) = -\sqrt{\frac{2}{\mathcal{E}_g}} g_T(t) \sin 2\pi f_c t$$

Fig. 7.20 \rightarrow signal point constellations for M = 2,4,8

Mapping or assignment of k information bits into the $M = 2^k$ possible changes may be done in number of ways

Preferred mapping \rightarrow Gray encoding (Fig. 7.20)

Most likely errors caused by noise \rightarrow selection of an adjacent phase to transmitted phase \rightarrow single bit error

Euclidean distance between any two signal points in constellation

$$d_{mn} = \sqrt{||\mathbf{s}_{\mathbf{m}} - \mathbf{s}_{\mathbf{n}}||^2} \\ = \sqrt{2\mathcal{E}_s\left(1 - \cos\frac{2\pi(m-n)}{M}\right)}$$

Minimum Euclidean distance (distance between two adjacent signal points)

$$d_{min} = \sqrt{2\mathcal{E}_s\left(1-\cosrac{2\pi}{M}
ight)}$$

 $d_{min} \rightarrow$ determine error-rate performance of receiver in AWGN

When \mathcal{E}_s not equal for every symbol, we can impress separate information "bits" on each of the quadrature carriers ($\cos 2\pi f_c t$ and $\sin 2\pi f_c t$) \rightarrow Quadrature Amplitude Modulation (QAM)

Form of quadrature-carrier multiplexing

$$u_m(t) = A_{mc}g_T(t)\cos 2\pi f_c t + A_{ms}g_T(t)\sin 2\pi f_c t, \ m = 1, 2, \dots, M$$

 $\{A_{mc}\}\$ and $\{A_{ms}\}\$ are the sets of amplitude levels obtained by mapping k-bit sequences into signal amplitudes.

Fig. 7.21 \rightarrow 16-QAM \rightarrow amplitude modulating each quadrature carrier by M=4 PAM

 $\mathsf{QAM} \to \mathsf{combined}$ digital-amplitude and digital-phase modulation

$$u_{mn}(t) = A_m g_T(t) \cos(2\pi f_c t + \theta_n), \quad m = 1, 2, \dots, M_1,$$

 $n = 1, 2, \dots, M_2$

If $M_1=2^{k_1}$ and $M_2=2^{k_2}$ ightarrow

Fig. 7.21 \rightarrow 16-QAM \rightarrow amplitude modulating each quadrature carrier by M=4 PAM

 $\mathsf{QAM} \to \mathsf{combined}$ digital-amplitude and digital-phase modulation

$$u_{mn}(t) = A_m g_T(t) \cos(2\pi f_c t + \theta_n), \quad m = 1, 2, \dots, M_1,$$

 $n = 1, 2, \dots, M_2$

If $M_1=2^{k_1}$ and $M_2=2^{k_2} \to k_1+k_2=\log_2(M_1 \times M_2)$ bits, at symbol rate $R_b/(k_1+k_2)$

Fig. 7.22. \rightarrow Functional block diagram of modulator for QAM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometric signal representation of the signals:

$$\mathbf{s_m} = (\sqrt{\mathcal{E}_s} A_{mc}, \sqrt{\mathcal{E}_s} A_{ms})$$

Fig. 7.23 \rightarrow Examples of signal space constellations for QAM.

Average transmitted energy \rightarrow sum of the average energies on each of the quadrature carriers

For rectangular signal constellations, average energy/symbol

$$\mathcal{E}_{\mathsf{av}} = rac{1}{M}\sum_{i=1}^M ||\mathbf{s}_i||^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Euclidean distance

$$d_{mn} = \sqrt{||\mathbf{s_m} - \mathbf{s_n}||^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ