Angle Modulation

ELEN 3024 - Communication Fundamentals

School of Electrical and Information Engineering, University of the Witwatersrand

July 15, 2013

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Angle Modulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proakis and Salehi, "Communication Systems Engineering" (2nd Ed.), Chapter 3

Overview

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

3.3. Angle Modulation

 $\begin{array}{l} \mbox{Amplitude-modulation methods} \rightarrow \mbox{linear-modulation methods} \\ \mbox{(AM DSB-FC not linear)} \end{array}$

FM and PM other analogue modulation techniques.

 $FM \rightarrow frequency of carrier f_c$ changed by message

 $\mathsf{PM} \rightarrow \mathsf{phase}$ of carrier is changed by variations in message signal

FM and PM \rightarrow angle-modulation methods \rightarrow nonlinear

3.3.Angle Modulation

Angle-modulation \rightarrow due to nonlinearity

- complex to implement
- Difficult to analyse

Many cases only approximate analysis.

Bandwidth-expansion of angle modulation \rightarrow effective bandwidth of modulated signal >> bandwidth of message signal

 \Rightarrow Trade-off bandwidth for high noise immunity

Angle-modulated signal:

$$u(t) = A_c \cos(\theta(t))$$

heta(t)
ightarrow phase of the signal

Instantaneous frequency $f_i(t)$:

$$f_i(t) = \frac{1}{2\pi} \frac{d}{dt} \theta(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since u(t) bandpass signal:

$$u(t) = A_c \cos(2\pi f_c t + \phi(t))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Therefore,

$$f_i(t) =$$

Since u(t) bandpass signal:

$$u(t) = A_c \cos(2\pi f_c t + \phi(t))$$

Therefore,

$$f_i(t) = f_c + \frac{1}{2\pi} \frac{d}{dt} \phi(t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathsf{PM} \to \mathsf{message} \ m(t) \to \phi(t) = k_p m(t)$$

FM:

$$f_i(t) - f_c = k_f m(t) = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$$

 k_p and $k_f \rightarrow$ phase and frequency deviation constants

$$\phi(t) = \begin{cases} k_p m(t), & \text{PM} \\ 2\pi k_f \int_{-\infty}^t m(\tau) \ d\tau, & \text{FM} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Observations:

 $\text{FM} \rightarrow \text{phase}$ modulate carrier with integral of a message.

Or

$$\frac{d}{dt}\phi(t) = \begin{cases} k_p \frac{d}{dt}m(t), & \text{PM} \\ 2\pi m(t), & \text{FM} \end{cases}$$

 $\mathsf{PM} \rightarrow \mathsf{frequency} \ \mathsf{modulate} \ \mathsf{carrier} \ \mathsf{with} \ \mathsf{derivative} \ \mathsf{of} \ \mathsf{message} \ m(t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fig 3.25: Important.

Fig 3.26: Important.

Demodulation of FM signal \rightarrow finding instantaneous frequency of the modulated signal and subtracting the carrier frequency from it.

Demodulation of PM signal \rightarrow finding the phase of the signal and then recovering m(t)

Maximum phase deviation in PM system $\rightarrow \Delta \phi_{max} = k_p \max[|m(t)|]$

Maximum frequency-deviation in FM $\rightarrow \Delta f_{max} = k_f \max[|m(t)|]$

Message signal
$$\rightarrow m(t) = a \cos(2\pi f_m t)$$

Modulate FM system and PM system

Find the modulated signal in each case.

For PM

$$\phi(t) =$$

Message signal
$$\rightarrow m(t) = a \cos(2\pi f_m t)$$

Modulate FM system and PM system

Find the modulated signal in each case.

For PM

$$\phi(t) = k_{p}m(t) = k_{p}a\cos(2\pi f_{m}t)$$

Message signal
$$\rightarrow m(t) = a \cos(2\pi f_m t)$$

Modulate FM system and PM system

Find the modulated signal in each case.

For PM

$$\phi(t) = k_{\rho}m(t) = k_{\rho}a\cos(2\pi f_m t)$$

For FM

$$\phi(t) =$$

Message signal
$$\rightarrow m(t) = a \cos(2\pi f_m t)$$

Modulate FM system and PM system

Find the modulated signal in each case.

For PM

$$\phi(t) = k_{\rho}m(t) = k_{\rho}a\cos(2\pi f_m t)$$

For FM

$$\phi(t) = 2\pi k_f \int_{-\infty}^t m(\tau) \ d\tau = \frac{k_f a}{f_m} \sin(2\pi f_m t)$$

Modulated signals:

$$u(t) = \left\{ \left. \right. \right.$$

Modulated signals:

$$u(t) = \begin{cases} A_c \cos(2\pi f_c t + k_p a \cos(2\pi f_m t)), & \mathsf{PM} \\ A_c \cos(2\pi f_c t + \frac{k_f a}{f_m} \sin(2\pi f_m t)), & \mathsf{FM} \end{cases}$$

Define

$$eta_{p}=k_{p}a$$
 and $eta_{f}=rac{k_{f}a}{f_{m}}$

we have

$$u(t) = \begin{cases} A_c \cos(2\pi f_c t + \beta_p \cos(2\pi f_m t)), & \mathsf{PM} \\ A_c \cos(2\pi f_c t + \beta_f \sin(2\pi f_m t)), & \mathsf{FM} \end{cases}$$

 β_p and $\beta_f \rightarrow$ modulation indices

We can extend the definition of the modulation index for a general nonsinusoidal signal m(t) as

$$\beta_p = k_p \max\left[|m(t)|\right]$$

$$\beta_f = \frac{k_f \max\left[|m(t)|\right]}{W}$$

In terms of the maximum phase and frequency deviation:

$$\beta_p = \Delta \phi_{max}$$

$$\beta_f = \frac{\Delta f_{max}}{W}$$

(日) (日) (日) (日) (日) (日) (日) (日)

3.3.1.1 Narrowband Angle Modulation

If k_p or k_f and m(t) such that $\phi(t) \ll 1 \quad \forall t$:

$$u(t) = A_c \cos(2\pi f_c t) \cos(\phi(t)) - A_c \sin(2\pi f_c t) \sin(\phi(t))$$

$$\approx A_c \cos(2\pi f_c t) - A_c \phi(t) \sin(2\pi f_c t)$$

Modulated signal very similar to conventional AM signal (AM DSB FC)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sine wave modulated by m(t) instead of cosine

 $\mathsf{Bandwidth}\approx$

3.3.1.1 Narrowband Angle Modulation

If k_p or k_f and m(t) such that $\phi(t) \ll 1 \quad \forall t$:

$$u(t) = A_c \cos(2\pi f_c t) \cos(\phi(t)) - A_c \sin(2\pi f_c t) \sin(\phi(t))$$

$$\approx A_c \cos(2\pi f_c t) - A_c \phi(t) \sin(2\pi f_c t)$$

Modulated signal very similar to conventional AM signal (AM DSB FC)

Sine wave modulated by m(t) instead of cosine

Bandwidth \approx Bandwidth(AM) \rightarrow 2 \times bandwidth(m(t))

3.3.1.1 Narrowband Angle Modulation

Fig. 3.27 \rightarrow phasor diagrams for narrowband angle modulation and AM

Narrowband angle modulation far less amplitude variations than AM

Narrowband angle modulation \rightarrow constant amplitude

Slight amplitude variations due to approximation

Narrowband angle-modulation does not provide better noise immunity compared to AM DSB FC.

3.3.2 Spectral Characteristics of Angle-Modulated Signals

Due to inherent nonlinearity of angle-modulation \rightarrow difficult to characterise spectral properties

Study simple modulation signals and certain approximations

Generalized to more complicated messages

Study 3 cases for m(t):

- sinusoidal signal
- periodic signal
- nonperiodic signal

For both PM and FM

$$u(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$$

 $\beta \rightarrow {\rm modulation} \ {\rm index}$

$$u(t) = Re\left(A_c e^{j2\pi f_c t} e^{j\beta \sin(2\pi f_m t)}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\sin(2\pi f_m t)$ periodic with period $T_m = \frac{1}{f_m}$, same true for complex exponential signal $e^{j\beta \sin(2\pi f_m t)}$

Therefore, can be expanded in Fourier series representation:

$$c_n = f_m \int_0^{\frac{1}{f_m}} e^{j\beta \sin(2\pi f_m t)} e^{-jn2\pi f_m t} dt = \frac{1}{2\pi} \int_0^{2\pi} e^{j\beta \sin u - nu} du \quad (u = 2\pi f_m t)$$

Last integral \rightarrow Bessel function of the first kind of order $n \rightarrow J_n(\beta)$

Therefore, Fourier series for complex exponential

$$e^{j\beta\sin 2\pi f_m t} = \sum_{n=-\infty}^{\infty} J_n(\beta) e^{j2\pi n f_m t}$$

Substituting into complex baseband representation

$$u(t) = \operatorname{Re} \left(A_c \sum_{n=-\infty}^{\infty} J_n(\beta) e^{j2\pi n f_m t} e^{j2\pi f_c t} \right) \\ = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos(2\pi (f_c + n f_m) t)$$

Even for single sinusoidal modulating signal, angle-modulated signal contains all frequencies of the form $f_c + nf_m$ for $n = 0, \pm 1, \pm 2, ...$

Actual bandwidth \rightarrow infinite

Amplitude of sinusoidal components of frequencies $f_c + nf_m$, n large \rightarrow very small

Therefore define finite effective bandwidth of modulated wave

Series expansion of Bessel function:

$$J_n(\beta) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{\beta}{2}\right)^{n+2k}}{k!(k+n)!}$$

For small β , can use following approximation

$$J_n(\beta)\approx \frac{\beta^n}{2^n n!}$$

Thus for small $\beta \rightarrow$ only first sideband corresponding to n=1 of importance

Properties of Bessel function (verified by expansion):

$$J_{-n}(\beta) = \begin{cases} J_n(\beta), & n \text{ even} \\ -J_n(\beta), & n \text{ odd} \end{cases}$$

Fig. 3.28 \rightarrow Plots of $J_n(\beta)$ for various values of n

Table 3.1. \rightarrow Table of the values of the Bessel function

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

carrier $\rightarrow c(t) = 10 \cos(2\pi f_c t)$

message $\rightarrow \cos(20\pi t)$

message used to frequency modulate carrier with $k_f = 50$

Find expression for the modulated signal and determine how many harmonics should be selected to contain 99% of the modulated signal power

In general, effective bandwidth of an angle-modulated signal which contains at least 98 % of the signal power:

$$B_{c}=2\left(\beta+1\right)f_{m}$$

 $\beta \rightarrow {\rm modulation} \ {\rm index}$

 f_m frequency of sinusoidal message signal.

Consider effect of amplitude and frequency of sinusoidal m(t) on bandwidth and number of harmonics in modulated signal

$$m(t) = a\cos(2\pi f_m t)$$

bandwidth (effective) is given by:

$$B_{c} = 2\left(\beta + 1\right)f_{m} = \begin{cases} 2(k_{p}a + 1)f_{m}, & \mathsf{PM} \\ 2\left(\frac{k_{f}a}{f_{m}} + 1\right)f_{m}, & \mathsf{FM} \end{cases}$$

or,

$$B_c = \begin{cases} 2(k_p a + 1)f_m, & \mathsf{PM} \\ 2(k_f a + f_m), & \mathsf{FM} \end{cases}$$

Increasing $a \rightarrow$ in PM and FM almost same effect on increasing bandwidth B_c

Increasing *f_m*:

- PM \rightarrow increase in B_c is proportional to increase in f_m
- FM \rightarrow increase in B_c is additive (for large β not substantial)

Consider Harmonics:

$$M_{c} = 2\lfloor\beta\rfloor + 3 = \begin{cases} 2\lfloor k_{p}a\rfloor + 3, & \mathsf{PM} \\ 2\lfloor \frac{k_{f}a}{f_{m}} \rfloor + 3, & \mathsf{FM} \end{cases}$$

Increasing $a \rightarrow$ increases the number of harmonics

Increasing f_m

- No effect on PM
- Almost linear decrease in number of harmonics for FM

3.3.2.2 Angle Modulation by a Periodic Message Signal

Consider periodic message signal m(t)

For PM

$$u(t) = A_c \cos(2\pi f_c t + \beta m(t))$$

rewrite as

$$u(t) = A_c Re\left[e^{j2\pi f_c t}e^{j\beta m(t)}\right]$$

3.3.2.2 Angle Modulation by a Periodic Message Signal

Assume m(t) is periodic with period $T_m = 1/f_m \rightarrow e^{j\beta m(t)}$ periodic, same period:

$$e^{jeta m(t)} = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_m t}$$

where

$$c_n = \frac{1}{T_m} \int_{T_m}^0 e^{j\beta m(t)} e^{-j2\pi n f_m t} dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} e^{j \left[\beta m\left(\frac{u}{2\pi f_m}\right) - nu\right]} du$$

and

$$u(t) = A_c Re \left[\sum_{n=-\infty}^{\infty} c_n e^{j2\pi f_c t} e^{j2\pi nf_m t} \right] \\ = A_c \sum_{n=-\infty}^{\infty} |c_n| \cos(2\pi (f_c + nf_m)t + \angle c_n)$$

3.3.2.2 Angle Modulation by a Periodic Message Signal

Spectral characteristics of angle-modulated signal for a general non-periodic deterministic message signal m(t) quite involved

Carson's rule \rightarrow approximate relation for effective bandwidth:

$$B_c = 2(\beta + 1)W$$

 β is modulation index defined as

$$\beta = \begin{cases} k_p \max[|m(t)|], & \mathsf{PM} \\ \frac{k_f \max[|m(t)|]}{W}, & \mathsf{FM} \end{cases}$$

 $\mathcal{W}
ightarrow$ bandwidth of message signal