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Angle Modulation

Proakis and Salehi, “Communication Systems Engineering” (2nd
Ed.), Chapter 3



Overview



3.3.Angle Modulation

Amplitude-modulation methods → linear-modulation methods
(AM DSB-FC not linear)

FM and PM other analogue modulation techniques.

FM → frequency of carrier fc changed by message

PM → phase of carrier is changed by variations in message signal

FM and PM → angle-modulation methods → nonlinear



3.3.Angle Modulation

Angle-modulation → due to nonlinearity

• complex to implement

• Difficult to analyse

Many cases only approximate analysis.

Bandwidth-expansion of angle modulation → effective bandwidth
of modulated signal >> bandwidth of message signal

⇒ Trade-off bandwidth for high noise immunity



3.3.1. Representation of FM and PM
signals

Angle-modulated signal:

u(t) = Ac cos(θ(t))

θ(t) → phase of the signal

Instantaneous frequency fi (t):

fi (t) =
1

2π

d

dt
θ(t)



3.3.1. Representation of FM and PM
signals

Since u(t) bandpass signal:

u(t) = Ac cos(2πfct + φ(t))

Therefore,

fi (t) =

fc +
1

2π

d

dt
φ(t)
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3.3.1. Representation of FM and PM
signals

PM → message m(t) → φ(t) = kpm(t)

FM:

fi (t)− fc = kf m(t) =
1

2π

d

dt
φ(t)

kp and kf → phase and frequency deviation constants

φ(t) =

{
kpm(t), PM

2πkf
∫ t
−∞m(τ) dτ, FM



3.3.1. Representation of FM and PM
signals

Observations:

FM → phase modulate carrier with integral of a message.

Or

d

dt
φ(t) =

{
kp

d
dt m(t), PM

2πm(t), FM

PM → frequency modulate carrier with derivative of message m(t)

Fig 3.25: Important.

Fig 3.26: Important.



3.3.1. Representation of FM and PM
signals

Demodulation of FM signal → finding instantaneous frequency of
the modulated signal and subtracting the carrier frequency from it.

Demodulation of PM signal → finding the phase of the signal and
then recovering m(t)

Maximum phase deviation in PM system →
∆φmax = kpmax [|m(t)|]

Maximum frequency-deviation in FM → ∆fmax = kf max [|m(t)|]



Example 3.3.1.
Message signal → m(t) = a cos(2πfmt)

Modulate FM system and PM system

Find the modulated signal in each case.

For PM

φ(t) =

kpm(t) = kpa cos(2πfmt)

For FM

φ(t) = 2πkf

∫ t

−∞
m(τ) dτ =

kf a

fm
sin(2πfmt)
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Example 3.3.1.

Modulated signals:

u(t) =

{

Ac cos(2πfct + kpa cos(2πfmt)), PM

Ac cos(2πfct + kf a
fm

sin(2πfmt)), FM

Define

βp = kpa and βf = kf a
fm

we have

u(t) =

{
Ac cos(2πfct + βp cos(2πfmt)), PM
Ac cos(2πfct + βf sin(2πfmt)), FM

βp and βf → modulation indices
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3.3.1. Representation of FM and PM
signals

We can extend the definition of the modulation index for a general
nonsinusoidal signal m(t) as

βp = kpmax [|m(t)|]

βf =
kf max [|m(t)|]

W

In terms of the maximum phase and frequency deviation:

βp = ∆φmax

βf =
∆fmax

W



3.3.1.1 Narrowband Angle Modulation

If kp or kf and m(t) such that φ(t)� 1 ∀t:

u(t) = Ac cos(2πfct) cos(φ(t))− Ac sin(2πfct) sin(φ(t))
≈ Ac cos(2πfct)− Acφ(t) sin(2πfct)

Modulated signal very similar to conventional AM signal (AM DSB
FC)

Sine wave modulated by m(t) instead of cosine

Bandwidth ≈

Bandwidth(AM) → 2 × bandwidth(m(t))
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3.3.1.1 Narrowband Angle Modulation

Fig. 3.27 → phasor diagrams for narrowband angle modulation
and AM

Narrowband angle modulation far less amplitude variations than
AM

Narrowband angle modulation → constant amplitude

Slight amplitude variations due to approximation

Narrowband angle-modulation does not provide better noise
immunity compared to AM DSB FC.



3.3.2 Spectral Characteristics of
Angle-Modulated Signals

Due to inherent nonlinearity of angle-modulation → difficult to
characterise spectral properties

Study simple modulation signals and certain approximations

Generalized to more complicated messages

Study 3 cases for m(t):

• sinusoidal signal

• periodic signal

• nonperiodic signal



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

For both PM and FM

u(t) = Ac cos(2πfct + β sin(2πfmt))

β → modulation index

u(t) = Re
(

Ace j2πfc te jβsin(2πfmt)
)



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Since sin(2πfmt) periodic with period Tm = 1
fm

, same true for

complex exponential signal e jβ sin(2πfmt)

Therefore, can be expanded in Fourier series representation:

cn = fm
∫ 1

fm
0 e jβ sin(2πfmt)e−jn2πfmt dt

= 1
2π

∫ 2π
0 e jβ sin u−nu du (u = 2πfmt)

Last integral → Bessel function of the first kind of order n → Jn(β)



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Therefore, Fourier series for complex exponential

e jβ sin 2πfmt =
∞∑

n=−∞
Jn(β)e j2πnfmt

Substituting into complex baseband representation

u(t) = Re
(
Ac
∑∞

n=−∞ Jn(β)e j2πnfmte j2πfc t
)

=
∑∞

n=−∞ AcJn(β) cos(2π(fc + nfm)t)

Even for single sinusoidal modulating signal, angle-modulated
signal contains all frequencies of the form fc + nfm for
n = 0,±1,±2, . . .

Actual bandwidth → infinite



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Amplitude of sinusoidal components of frequencies fc + nfm, n
large → very small

Therefore define finite effective bandwidth of modulated wave

Series expansion of Bessel function:

Jn(β) =
∞∑
k=0

(−1)k
(
β
2

)n+2k

k!(k + n)!



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

For small β, can use following approximation

Jn(β) ≈ βn

2nn!

Thus for small β → only first sideband corresponding to n = 1 of
importance



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Properties of Bessel function (verified by expansion):

J−n(β) =

{
Jn(β), n even
−Jn(β), n odd

Fig. 3.28 → Plots of Jn(β) for various values of n

Table 3.1. → Table of the values of the Bessel function



Example 3.3.2

carrier → c(t) = 10 cos(2πfct)

message → cos(20πt)

message used to frequency modulate carrier with kf = 50

Find expression for the modulated signal and determine how many
harmonics should be selected to contain 99% of the modulated
signal power



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

In general, effective bandwidth of an angle-modulated signal which
contains at least 98 % of the signal power:

Bc = 2 (β + 1) fm

β → modulation index

fm frequency of sinusoidal message signal.



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Consider effect of amplitude and frequency of sinusoidal m(t) on
bandwidth and number of harmonics in modulated signal

m(t) = a cos(2πfmt)

bandwidth (effective) is given by:

Bc = 2 (β + 1) fm =

{
2(kpa + 1)fm, PM

2
(
kf a
fm

+ 1
)

fm, FM

or,

Bc =

{
2(kpa + 1)fm, PM
2(kf a + fm), FM



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Increasing a → in PM and FM almost same effect on increasing
bandwidth Bc

Increasing fm:

• PM → increase in Bc is proportional to increase in fm

• FM → increase in Bc is additive (for large β not substantial)



3.3.2.1 Angle Modulation by a Sinusoidal
Signal

Consider Harmonics:

Mc = 2bβc+ 3 =

{
2bkpac+ 3, PM

2
⌊
kf a
fm

⌋
+ 3, FM

Increasing a → increases the number of harmonics

Increasing fm

• No effect on PM

• Almost linear decrease in number of harmonics for FM



3.3.2.2 Angle Modulation by a Periodic
Message Signal

Consider periodic message signal m(t)

For PM

u(t) = Ac cos(2πfct + βm(t))

rewrite as

u(t) = AcRe
[
e j2πfc te jβm(t)

]



3.3.2.2 Angle Modulation by a Periodic
Message Signal

Assume m(t) is periodic with period Tm = 1/fm → e jβm(t)

periodic, same period:

e jβm(t) =
∞∑

n=−∞
cne j2πnfmt

where

cn = 1
Tm

∫ 0
Tm

e jβm(t)e−j2πnfmtdt

u=2πfmt= 1
2π

∫ 2π
0 e

j
[
βm
(

u
2πfm

)
−nu

]
du

and

u(t) = AcRe
[∑∞

n=−∞ cne j2πfc te j2πnfmt
]

= Ac
∑∞

n=−∞ |cn| cos(2π(fc + nfm)t + ∠cn)



3.3.2.2 Angle Modulation by a Periodic
Message Signal

Spectral characteristics of angle-modulated signal for a general
non-periodic deterministic message signal m(t) quite involved

Carson’s rule → approximate relation for effective bandwidth:

Bc = 2 (β + 1) W

β is modulation index defined as

β =

{
kpmax[|m(t)|], PM
kf max[|m(t)|]

W , FM

W → bandwidth of message signal


