Angle Modulation

ELEN 3024 - Communication Fundamentals

School of Electrical and Information Engineering, University of the Witwatersrand

July 15, 2013

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Angle Modulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proakis and Salehi, "Communication Systems Engineering" (2nd Ed.), Chapter 3

Overview

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Modulation process \rightarrow generation of new frequencies not present in input signal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modulation + Demodulation \neq linear, time-invariant

Angle modulators \rightarrow time-varying, nonlinear systems

One way of generating $\mathsf{FM}\to\mathsf{design}$ oscillator whose frequency changes with input voltage

Input voltage 0 \rightarrow oscillator generates sinusoid with frequency f_c

When input voltage changes, frequency changes accordingly

Two approaches to design VCO (voltage-controlled oscillator)

- Varactor diode
- Reactance tube

Varactor diode \rightarrow capacitor whose capacitance changes with applied voltage

If used in tuned circuit of oscillator, and message signal is applied to it, frequency of oscillator changes according to message

Assume:

- Inductance of inductor $\rightarrow L_0$
- Capacitance of varactor $\rightarrow C(t) = C_0 + k_0 m(t)$

When $m(t) = 0 \rightarrow$ frequency of tuned circuit $f_c = \frac{1}{2\pi\sqrt{L_0C_0}}$ For nonzero m(t)

$$\begin{aligned} f_i(t) &= \frac{1}{2\pi\sqrt{L_0(C_0+k_0m(t))}} \\ &= \frac{1}{2\pi\sqrt{L_0C_0}}\frac{1}{\sqrt{1+\frac{k_0}{C_0}m(t)}} \\ &= f_c\frac{1}{\sqrt{1+\frac{k_0}{C_0}m(t)}} \end{aligned}$$

Assuming that:

$$\epsilon = \frac{k_0}{C_0} m(t) \ll 1$$

and using approximations

$$\sqrt{1+\epsilon} \approx 1 + \frac{\epsilon}{2}$$
$$\frac{1}{1+\epsilon} \approx 1 - \epsilon$$

We obtain

$$f_i(t) \approx f_c\left(1 - \frac{k_0}{2C_0}m(t)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$f_i(t) \approx f_c\left(1 - \frac{k_0}{2C_0}m(t)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \Rightarrow relation for frequency-modulated signal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reactance tube, very similar

Indirect method:

First generate a narrowband angle-modulated signal, then change to wideband signal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fig. 3.32 \rightarrow Generation of narrowband angle-modulated signal

Next step: convert narrowband angle-modulated wave to wideband (Fig. 3.33)

1. frequency multiplier, multiplies instantaneous frequency with constant \boldsymbol{n}

$$u_n(t) = A_c \cos(2\pi f_c t + \phi(t))$$

$$y(t) = A_c \cos(2\pi n f_c t + n\phi(t))$$

 \Rightarrow Frequency multiplication achieved by applying input signal to a nonlinear element, and bandpass filtering the output.

2. up- or down-conversion to shift modulated signal to desired carrier frequency

$$u(t) = A_c \cos(2\pi (nf_c - f_{LO})t + n\phi(t))$$

can choose n and can choose f_{LO}

FM Demodulators \rightarrow generate AM signal whose amplitude is proportional to the instantaneous frequency of FM signal, then use AM demodulator to recover message signal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Transform FM signal to AM \to pass FM through LTI system whose frequency response \approx straight line in frequency band of FM signal

If frequency response is:

$$|H(f)| = V_0 + k(f - f_c)$$
 for $|f - f_c| < \frac{B_c}{2}$

and input to system is

$$u(t) = A_c \cos\left(2\pi f_c t + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right),$$

then output

$$v_0(t) = A_c(V_0 + kk_f m(t)) \cos\left(2\pi f_c t + 2\pi k_f \int_{\overline{\Box}}^t m(\tau) d\tau\right)$$

2. Demodulate signal to obtain $A_c(V_0 + kk_f m(t))$, from which m(t) can be recovered

Many circuits can be used to implement first stage

- Differentiator $|H(f)| = 2\pi f$
- Rising half of a tuned circuit

Balanced discriminator \rightarrow two circuits tuned at f_1 and $f_2 \rightarrow$ linear characteristic over wider range of frequencies

FM demodulation where converted to AM \rightarrow bandwidth = B_c (channel bandwidth)

Noise passed by the demodulator \rightarrow noise contained within B_c

FM Demodulation \rightarrow use feedback in FM demodulator to narrow bandwidth of FM detector, reduce noise power at output of demodulator

Fig 3.37: FM demodulator with feedback

FM discrimination is placed in the feedback branch of a feedback system that employs a VCO path

Bandwidth of the discriminator and lowpass filter \rightarrow match bandwidth of message signal m(t)

Output of lowpass filter \rightarrow desired output

Alternative: Use PLL \rightarrow Fig. 3.38

input:

$$u(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

For FM:

$$\phi(t) = 2\pi k_f \int_{-\infty}^t m(\tau) d\tau$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $VCO \rightarrow$ generates sinusoid of a fixed frequency, carrier frequency f_c , in absence of input control voltage

Suppose control voltage to VCO is output of loop filter (v(t))

instantaneous frequency of VCO:

$$f_v(t) = f_c + k_v v(t)$$

 k_v deviation constant (Hz/Volt)

Thus, VCO output expressed as

$$y_{v}(t) = A_{v} \sin[2\pi f_{c}t + \phi_{v}(t)]$$

where

$$\phi_{\mathbf{v}}(t) = 2\pi k_{\mathbf{v}} \int_0^t \mathbf{v}(\tau) d\tau$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Phase comparator \rightarrow multiplier and filter that rejects signal component at $2f_c$

Output of phase comparator:

$$e(t) = \frac{1}{2}A_{\nu}A_{c}\sin[\phi(t) - \phi_{\nu}(t)]$$

where difference $\phi(t) - \phi_{v}(t) \equiv \phi_{e}(t)$ constitutes the phase error

e(t)
ightarrow input to loop filter

Assume PLL in lock \rightarrow phase error small:

$$\sin[\phi(t) - \phi_{v}(t)] \approx \phi(t) - \phi_{v}(t) = \phi_{e}(t)$$

Under this condition (phase error small), deal with linearized model of PLL (Fig. 3.39)

Express phase error as

$$\phi_e(t)=\phi(t)-2\pi k_
u\int_0^t
u(au)d au$$

or

$$\frac{d}{dt}\phi_e(t)+2\pi k_v v(t)=\frac{d}{dt}\phi(t)$$

or

$$\frac{d}{dt}\phi_e(t) + 2\pi k_v \int_0^\infty \phi_e(\tau)g(t-\tau)d\tau = \frac{d}{dt}\phi(t)$$

$$\frac{d}{dt}\phi_e(t) + 2\pi k_v \int_0^\infty \phi_e(\tau)g(t-\tau)d\tau = \frac{d}{dt}\phi(t)$$

Taking Fourier:

$$(j2\pi f)\mathbf{\Phi}_{\mathbf{e}}(f) + 2\pi k_{v}\mathbf{\Phi}_{\mathbf{e}}(f)G(f) = (j2\pi f)\mathbf{\Phi}(f)$$

Hence

$$\mathbf{\Phi}_{\mathbf{e}}(f) = \frac{1}{1 + \frac{k_v}{jf}G(f)}\mathbf{\Phi}(f)$$

Corresponding equation for control voltage to the VCO

$$V(f) = \Phi_{e}(f)G(f)$$

= $\frac{G(f)}{1 + \frac{k_{v}}{ff}G(f)}\Phi(f)$

Suppose that we design G(f) such that

$$\left|k_{v}\frac{G(f)}{jf}\right|\gg 1$$

in frequency band |f| < W.

Then:

$$V(f) = \frac{j2\pi f}{2\pi k_{\rm v}} \mathbf{\Phi}_{\mathbf{e}}(f)$$

In time domain:

$$v(t) = \frac{1}{2\pi k_v} \frac{d}{dt} \phi(t)$$

= $\frac{k_f}{k_v} m(t)$

Since control voltage of the VCO is proportional to message signal, v(t) is the demodulated signal

Output of loop filter $(G(f)) \rightarrow$ desired message signal \therefore bandwidth of G(f) = W

Noise at the output of loop filter also limited to the bandwidth W.