\square

University of the Witwatersrand, Johannesburg

Course or topic No(s) \square

Course or topic name(s)
Paper Number \& title

Examination/Test* to be
held during month(s) of
(*delete as applicable)

Year of Study
(Art \& Sciences leave blank)

Degrees/Diplomas for which
this course is prescribed
(BSc (Eng) should indicate which branch)

Faculty/ies presenting candidates

Internal examiners and telephone number(s)

External examiner(s)

Special materials required (graph/music/drawing paper) maps, diagrams, tables, computer cards, etc)

Time allowance

Instructions to candidates (Examiners may wish to use this space to indicate, inter alia, the contribution made by this examination or test towards the year mark, if appropriate)

Answer $A L L$ questions.
Type '2' Examination.

Internal Examiners or Heads of Department are requested to sign the declaration overleaf

1. As the Internal Examiner/Head of Department, I certify that this question paper is in final form, as approved by the External Examiner, and is ready for reproduction.
2. As the Internal Examiner/Head of Department, I certify that this question paper is in final form and is ready for reproduction.
(1. is applicable to formal examinations as approved by an external examiner, while 2. is applicable to formal tests not requiring approval by an external examiner-Delete whichever is not applicable)

Name:
Signature:
(THIS PAGE NOT FOR REPRODUCTION)

Note: Show all workings, complete with the necessary comments. Marks will be allocated for all working and logical reasoning and not just for the correct answer.

Question 1

Consider the following cryptographic system. The elements $0,1, \ldots, 25$ of \mathbb{Z}_{26} represent the letters A, B, \ldots, Z. Encryption consists of replacing each element x, by $\mathcal{E}(x)$ defined as follows:

$$
\mathcal{E}_{k_{e}}(x)=\left(x \cdot k_{e}+k_{e}\right) \quad \bmod 26
$$

(a) Determine the size of the keyspace of the encryption function $\mathcal{E}_{k_{e}}(x)$.
(b) Determine the function $\mathcal{D}_{k_{d}}(x)$ which will decrypt the ciphertext generated by $\mathcal{E}_{k_{e}}(x)$. Verify that $\mathcal{D}_{k_{d}}(x)$ is working as expected by encrypting the character C using the key $k_{e}=5$ and then decrypting the resulting ciphertext with $\mathcal{D}_{k_{d}}(x)$.
(5 marks)
(c) Determine whether the cipher $\mathcal{E}_{k_{e}}(x)$ forms a groups (the cipher is closed).
(4 marks)
(d) What is the perceived keyspace and the effective keyspace of the double cipher consisting of $\mathcal{E}_{k_{1}}\left(\mathcal{E}_{k_{2}}(x)\right)$? Determine the keys k_{1} and k_{2} for the following plaintext and ciphertext pairs:

- plaintext1 $=$ ' BK^{\prime}, ciphertext1 $=$ ' FA ', and
- plaintext $2={ }^{\prime} \mathrm{FI}$ ', ciphertext $2=$ 'XE'.

Question 2

The following vector is received on a channel that introduces a maximum of one error per codeword:

$$
\bar{r}=\left(\alpha^{5}, \alpha^{1}, 1, \alpha^{2}, \alpha^{4}, \alpha^{2}, \alpha^{5}\right)
$$

Assume that the original codeword was generated with the generator matrix

$$
G=\left[\begin{array}{lllllll}
\alpha^{3} & \alpha^{1} & 1 & \alpha^{3} & 1 & 0 & 0 \\
\alpha^{6} & \alpha^{6} & 1 & \alpha^{2} & 0 & 1 & 0 \\
\alpha^{5} & \alpha^{4} & 1 & \alpha^{4} & 0 & 0 & 1
\end{array}\right]
$$

Determine whether \bar{r} is a valid codeword or not. If \bar{r} is not a valid codeword, determine the position of the error, as well as the correct value of the element in error. Assume that the elements are from the Galois field $\mathrm{GF}\left(2^{m}\right)$, generated by $p(x)=x^{3}+x+1$.

Show all intermediate steps.
(25 marks)
(Test Total 55 marks)
($100 \%=50$ marks)

