\square

University of the Witwatersrand, Johannesburg

Course or topic No(s) \square

Course or topic name(s)
Paper Number \& title

Examination/Test* to be
held during month(s) of
(*delete as applicable)
Year of Study
(Art \& Sciences leave blank)

Degrees/Diplomas for which
this course is prescribed
(BSc (Eng) should indicate which branch)

Faculty/ies presenting candidates

Internal examiners
and telephone
number(s)

External examiner(s)

Special materials required (graph/music/drawing paper) maps, diagrams, tables, computer cards, etc)

Time allowance

Prof ASJ Helberg

\square

Course Nos	ELEN3015	Hours	$1 \frac{1}{2}$

Instructions to candidates (Examiners may wish to use this space to indicate, inter alia, the contribution made by this examination or test towards the year mark, if appropriate)

Answer $A L L$ questions.
Type '2' Examination.

Internal Examiners or Heads of Department are requested to sign the declaration overleaf

1. As the Internal Examiner/Head of Department, I certify that this question paper is in final form, as approved by the External Examiner, and is ready for reproduction.
2. As the Internal Examiner/Head of Department, I certify that this question paper is in final form and is ready for reproduction.
(1. is applicable to formal examinations as approved by an external examiner, while 2. is applicable to formal tests not requiring approval by an external examiner-Delete whichever is not applicable)

Name:
Signature:
(THIS PAGE NOT FOR REPRODUCTION)

Note: Show all workings, complete with the necessary comments. Marks will be allocated for all working and logical reasoning and not just for the correct answer.

Question 1

Consider the mapping depicted in Table 1.

Table 1: Character to decimal conversion

Character	Number	Comment	Character	Number	Comment
'a'	0		'o'	14	
'b'	1		'p'	15	
'c'	2		'q'	16	
'd'	3		'r'	17	
'e'	4		's'	18	
'f'	5		't'	19	
'g'	6		'u'	20	
'h'	7		'v'	21	
'i'	8		'w'	22	
'j'	9		'x'	23	
'k'	10		'y'	24	
${ }^{\prime} \mathrm{l}$	11		'z'	25	
'm'	12		¢	26	space
'n'	13				

(a) Determine the keyspace \mathcal{K} of the cipher $\mathcal{E}_{k}(P)$, where

$$
\begin{aligned}
& C=\mathcal{E}_{k}(P) \\
& C=(P \times k) \quad \bmod 27
\end{aligned}
$$

with k an integer number, P the plaintext character $(P \in\{0,1,2, \ldots, 26\})$ and C the resulting ciphertext. Motivate your answer.
(b) Prove that the ciphertext $C=\mathcal{E}_{k}(P)$ is decrypted by $\mathcal{D}_{k^{-1}}(C)$, where

$$
\begin{aligned}
& P=\mathcal{D}_{k^{-1}}(C) \\
& P=\left(C \times k^{-1}\right) \quad \bmod 27,
\end{aligned}
$$

with k^{-1} the multiplicative inverse of k satisfying $1 \equiv\left(k \times k^{-1}\right) \bmod 27$.
(c) Consider the block cipher $\mathcal{C}_{T}\left(p_{1}, p_{2}, p_{3}\right)$, with key $K_{T}=\left(k_{1}, k_{2}, k_{3}\right)$ and output $C_{T}=\left(c_{1}, c_{2}, c_{3}\right)$, where $c_{i}=\left(p_{i} \times k_{i}\right) \bmod 27$. Determine the size of the keyspace \mathcal{K}_{T}.
(d) Describe, with the aid of sketches, how cipher block chaining mode works. Show both encryption and decryption.
(2 marks)
(e) What is the advantage of cipher block chaining mode, when compared to electronic block mode?
(f) Encrypt the message 'blue fox' using \mathcal{C}_{T} in cipher block chaining mode. Make use of ciphertext stealing. Clearly indicate the order in which the messages are transmitted over the channel.

Parameters to be used:

- Initialisation Vector (IV) $=(25,3,12)$
- $k_{1}=10, k_{2}=14, k_{3}=23$
- Replace all XOR operations with addition $\bmod 27$
- The message to be encrypted has 8 characters
(10 marks)
(Total 22 marks)

Question 2

The matrix C is the result after the ShiftRows operation of a round during AES encryption.

$$
C=\left[\begin{array}{cccc}
d 4 & e 0 & b 8 & 1 e \\
b f & b 4 & 41 & 27 \\
5 d & 52 & 11 & 98 \\
30 & a e & f 1 & e 5
\end{array}\right]
$$

Compute x, the missing element of the matrix D, where D is the output after the MixColumns operation.

$$
D=\left[\begin{array}{cccc}
04 & e 0 & 48 & 28 \\
66 & x & f 8 & 06 \\
81 & 19 & d 3 & 26 \\
e 5 & 9 a & 7 a & 4 c
\end{array}\right]
$$

Hints:

$$
M=\left[\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right]
$$

$m(x)=x^{8}+x^{4}+x^{3}+x+1$

Question 3

Alice and Bob wish to communicate securely over an open channel using a public-key scheme. They decide to use the RSA algorithm.
(a) Bob generates two primes, $p=127$ and $q=131$, to be used with the RSA algorithm. From this determine $n, \varphi(n)$ and the decryption key d, given that $e=121$.
(b) Using pseudocode implement the RSA encryption function $m^{e} \bmod n$ for a processor with a word size limited to z bits, such that the largest values for m, e and n can be used. Specify the values for m, e and n which will ensure that no overflows occur. (Assume that the processor has a function $a \bmod p$, where a and $p \leqslant 2^{z}-1$).

