\square

University of the Witwatersrand, Johannesburg

Course or topic No(s) \square

Course or topic name(s)
Paper Number \& title

Examination/Test* to be
held during month(s) of
(*delete as applicable)
Year of Study
(Art \& Sciences leave blank)

Degrees/Diplomas for which
this course is prescribed
(BSc (Eng) should indicate which branch)

Faculty/ies presenting candidates

Internal examiners
and telephone
number(s)

External examiner(s)

Special materials required (graph/music/drawing paper) maps, diagrams, tables, computer cards, etc)

Time allowance

Prof. T. G. Swart

Course Nos	ELEN3015	Hours	3

Answer $A L L$ questions.
Closed book
Engineering calculator permitted
A4 handwritten information sheet
Total marks: 109 - Full marks: 100

Internal Examiners or Heads of School are requested to sign the declaration overleaf

1. As the Internal Examiner/Head of School, I certify that this question paper is in final form, as approved by the External Examiner, and is ready for reproduction.
2. As the Internal Examiner/Head of School, I certify that this question paper is in final form and is ready for reproduction.
(1. is applicable to formal examinations as approved by an external examiner, while 2. is applicable to formal tests not requiring approval by an external examiner-Delete whichever is not applicable)

Name:
Signature:
(THIS PAGE NOT FOR REPRODUCTION)

Note: Show all workings, complete with the necessary comments. Marks will be allocated for all working and logical reasoning and not just for the correct answer.All terms and symbols are as defined in the course handouts. Answers written on your question paper will NOT be marked. Answers written in pencil will NOT be marked.

Question 1

Consider a binary sequence. Given the input stream

$$
010011000010110000010010
$$

(read left to right), answer the following.
(a) Compress the above sequence by using the Lempel-Ziv algorithm.
(b) Calculate the probabilities of digits 0 and 1 of the given sequence.
(1 marks)
(c) Calculate the entropies of this sequence in the second extension and in the third extension.
(d) Implement Huffman coding based on the second extension and the third extension of the alphabet, and determine the corresponding compression rates.

Question 2

We consider the Galois field $\operatorname{GF}\left(2^{3}\right)$ based on the primitive polynomial $h(x)=1+x^{2}+x^{3}$.
(a) Derive the Galois field based on the given primitive polynomial in terms of binary sequences, polynomial notations and powers of the primitive element (α).
(b) Derive the corresponding minimum polynomials.
(c) Derive the generator polynomial of a single-error-correcting code based on the minimum polynomials. What is the rate of the code generated by the derived generator polynomial?
(d) If the received sequence is [0 E 101 E 0] (E denotes erasure error), determine the sent codeword using the syndrome decoding algorithm.
(Total 22 marks)

Question 3

The frequency band between 100 kHz and 101 kHz is allocated to a communication system. The signal power is $S=31$ power unit per hertz. The noise in the band is additive white Gaussian noise with double-sided power spectral density $N_{0}=1 / 2$ power unit per hertz.
(a) What is the Shannon limit on the achievable data rate (bits/sec)?
(5 marks)
(b) For a given bandwidth between 800 MHz and 850 MHz , and transmission data rate of $10^{5} \mathrm{bits} / \mathrm{sec}$, what is the required signal-to-noise ratio in decibels (dB) ?

Question 4

(a) A memoryless information source has a countably infinite symbol alphabet $\mathbf{S}=$ $\left\{S_{1}, S_{2}, \ldots\right\}$ with $P_{i}=b \alpha^{i}$ for $i=1,2, \ldots$ Express b in terms of α.
(b) Calculate the entropy of \mathbf{S} as a function of α.

Hint: $\sum_{i=1}^{\infty} a^{i}=\frac{a}{1-a}$ and $\sum_{i=1}^{\infty} i a^{i}=\frac{a}{(1-a)^{2}}$ given $|a| \leq 1$.

Question 5

When determining the security of a HASH system, the cryptanalyst tries the following attacks.
(a) If the attacker is NOT allowed to modify the original message, determine the number of HASH calculations that would be required to have a 50% chance of generating a new message with the same HASH as the original message. In your calculations, assume the HASH length is 5 bits.
(b) Derive the expression of number of HASH calculations, n, required to have a 50% chance of generating two different messages with the same HASH. Determine the approximate value of n.
(Total 10 marks)

Question 6

Consider a half-rate convolutional code with the generator expressed in an octal representation [7, 5].
(a) Determine the free distance of the code.
(b) Assume the encoding procedure takes places when the initial state is reset to all 0's on the sender side. Provided a sequence 111000 is received, implement the Viterbi decoding and determine the most likely message sent.

Question 7

Consider the key expansion procedure for AES encryption. The given four subkeys are $w_{4}=a 0$ fafe17, $w_{5}=88542 c b 1, w_{6}=23 a 33939$ and $w_{7}=2 a 6 c 7605$.
(a) Complete the following procedure to generate the next subkey w_{8}.
i. Generate the temporary subkey $w_{t}=w$ \qquad .
ii. Rotate (round-end) the binary sequence w_{t} to the left for 8 positions and obtain $w_{t}=$ \qquad .
iii. Substitute w_{t} byte by byte using Table 1 and obtain $w_{t}=$ \qquad .
iv. Generate the round constant $r_{8}=$ \qquad for w_{8}.
v. $w_{t}=w_{t} \oplus r_{8}=$ \qquad .
(2 marks)
vi. $w_{8}=w_{t} \oplus w_{4}=$ \qquad .
(2 marks)
(b) Let the irreducible polynomial for $\mathrm{GF}\left(2^{8}\right)$ be $m(x)=x^{8}+x^{4}+x^{3}+x+1$ (not primitive). The MixColumn Transformation is defined as

$$
M C=\left(\begin{array}{cccc}
\alpha & \alpha+1 & 1 & 1 \\
1 & \alpha & \alpha+1 & 1 \\
1 & 1 & \alpha & \alpha+1 \\
\alpha+1 & 1 & 1 & \alpha
\end{array}\right)\left(\begin{array}{cccc}
B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\
B_{1,1} & B_{1,2} & B_{1,3} & B_{1,0} \\
B_{2,2} & B_{2,3} & B_{2,0} & B_{2,1} \\
B_{3,3} & B_{3,0} & B_{3,1} & B_{3,2}
\end{array}\right)
$$

Given $B_{0,0}=89_{16}, B_{1,1}=0_{16}, B_{2,2}=A B_{16}$ and $B_{3,3}=C D_{16}$, calculate the four elements in the first column of the resultant matrix.

Table 1: AES S-Box

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	63	7 c	77	7b	f2	6 b	6 f	c5	30	01	67	2b	fe	d7	ab	76
1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9 c	a4	72	c0
2	b7	fd	93	26	36	3 f	f7	cc	34	a5	e5	f1	71	d8	31	15
3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4	09	83	2c	1a	1b	6 e	5a	a0	52	3b	d6	b3	29	e3	2 f	84
5	53	d1	00	ed	20	fc	b1	5b	6 a	cb	be	39	4 a	4 c	58	cf
6	d0	ef	aa	fb	43	4 d	33	85	45	f9	02	7 f	50	3c	9 f	a8
7	51	a3	40	8 f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8	cd	0c	13	ec	$5 f$	97	44	17	c4	a7	7 e	3d	64	5d	19	73
9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5	0b	db
a	e0	32	3 a	0a	49	06	24	5 c	c2	d3	ac	62	91	95	e4	79
b	e7	c8	37	6 d	8 d	d5	4 e	a9	6 c	56	f4	ea	65	7a	ae	08
c	ba	78	25	2 e	1 c	a6	b4	c6	e8	dd	74	1f	4b	bd	8 b	8 a
d	70	3 e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1 d	9 e
e	e1	f8	98	11	69	d9	8 e	94	9b	1 e	87	e9	ce	55	28	df
f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

