Cyclic Codes

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Overview

The ring $\mathbb{Z}_2[x]/ < x^n + 1 >$

Relationship betweem \digamma_2^n and $\mathbb{Z}_2[x]/ < x^n + 1 >$

Systematic encoding

Generator matrix

Parity-check matrix

G in systematic form

Syndrome computation and error detection

Error correction

Error detection

1. Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strong algebraic properties of cyclic codes \rightarrow easy encoded and decoded

Very important subclass of linear codes.

Particularly efficient for error detection.

1. Introduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Strong algebraic properties of cyclic codes \rightarrow easy encoded and decoded

Very important subclass of linear codes.

Particularly efficient for error detection.

Cyclic codes contains important subclass of codes referred to as CRC codes

2. Description of cyclic codes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\overline{v} = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{Z}^n$$

Cyclic Shift

$$\overline{v}^{(1)} = (v_{n-1}, v_0, v_1, \dots, v_{n-2}) \rightarrow \text{cyclic shift of } \overline{v}.$$

 $\overline{v}^{(i)} = (v_{n-i}, \dots, v_{n-1}, v_0, \dots, v_{n-i-1}) \rightarrow \text{components of } \overline{v} \text{ shifted}$ *i* positions forward

(n, k) Cyclic Code

(n, k) linear code $C \rightarrow$ Every cyclic shift of every codeword is again a codeword in C.

3. The ring $\mathbb{Z}_2[x] / < x^n + 1 >$

Polynomial ring: $\mathbb{Z}_2[x]/ < x^n + 1 >$ $a(x) \equiv b(x) \mod (x^n + 1) \text{ if } (x^n + 1)|a(x) - b(x).$ $[a(x)] = \{b(x) \in \mathbb{Z}_2[x] : a(x) \equiv b(x) \mod (x^n + 1)\}$ $\mathbb{Z}_2[x]/ < x^n + 1 > = \{[a(x)] : a(x) \in \mathbb{Z}_2[x]\} \text{ forms a ring under multiplication and addition.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3. The ring $\mathbb{Z}_2[x] / < x^n + 1 >$

Note that $x^n \equiv 1 \mod (x^n + 1)$, because $x^n - 1 = x^n + 1$

 $\therefore [x^n] = [1]$

Furthermore, $x^{n+1} \equiv x \mod (x^n + 1)$, because $x^{n+1} - x = x^{n+1} + x = x(x^n + 1)$

 $\therefore [x^{n+1}] = [x]$, etc.

[a(x)] is simply written as a(x)

3. The ring $\mathbb{Z}_2[x] / < x^n + 1 >$

using shorthand notation: a(x) = b(x) if $x^n + 1|a(x) - b(x)$

Ring $\mathbb{Z}_2[x]/ < x^n + 1 > \text{contains all polynomials of degree less than } n.$

This ring has 2^n elements.

if $a(x) = q(x)(x^n + 1) + r(x)$, then $a(x) = r(x) \in \mathbb{Z}_2[x]/ < x^n + 1 >$

1-to-1 correspondence between \mathbb{Z}_2^n and $\mathbb{Z}_2[x]/ < x^n + 1 >$

$$\overline{v} = (v_0, v_1, \dots, v_{n-1}) \mapsto v(x) = v_0 + v_1 x + v_2 x^2 + \dots + v_{n-1} x^{n-1}$$

 $v(x) \rightarrow \text{code polynomial, if } \overline{v} \rightarrow \text{codeword.}$

$$x^i v(x) = v^{(i)}(x) \in \mathbb{Z}_2[x] / < x^n + 1 > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimum degree polynomial is unique (n, k) cyclic codeword

Code polynomial $g(x) = g_0 + g_1 x + ... + g_{r-1} x^{r-1} + x^r$

Minimum degree \rightarrow unique

 $g(x) \rightarrow g_0 = 1.$

Go through proof on own time

Multiples of g(x) forms codewords $g(x) = 1 + g_1 x + g_2 x^2 + \ldots + g_{r-1} x^{r-1} + x^r$

 $\mathbf{Deg}(g(x)) \rightarrow$ minimum degree in code *C*

$$C = \{a(x)g(x) \in \mathbb{Z}_2[x] / < x^n + 1 >: a(x) \in \mathbb{Z}_2[x]\}.$$

Go through proof on own time

Messages	Codewords	Code polinomials
$(0\ 0\ 0\ 0)$	$(0\ 0\ 0\ 0\ 0\ 0\ 0)$	$0 = 0 \cdot g(x)$
$(1\ 0\ 0\ 0)$	$(1\ 1\ 0\ 1\ 0\ 0)$	$1 + x + x^3 = 1 \cdot g(x)$
$(0\ 1\ 0\ 0)$	$(0\ 1\ 1\ 0\ 1\ 0\ 0)$	$x + x^2 + x^4 = x \cdot g(x)$
$(1\ 1\ 0\ 0)$	$(1\ 0\ 1\ 1\ 1\ 0\ 0)$	$1 + x^2 + x^3 + x^4 = (1 + x) \cdot g(x)$
$(0\ 0\ 1\ 0)$	$(0\ 0\ 1\ 1\ 0\ 1\ 0)$	$x^2 + x^3 + x^5 = x^2 \cdot g(x)$
$(1 \ 0 \ 1 \ 0)$	$(1\ 1\ 1\ 0\ 0\ 1\ 0)$	$1 + x + x^2 + x^5 = (1 + x^2) \cdot g(x)$
$(0\ 1\ 1\ 0)$	$(0\ 1\ 0\ 1\ 1\ 1\ 0)$	$x + x^3 + x^4 + x^5 = (x + x^2) \cdot g(x)$
$(1\ 1\ 1\ 0)$	$(1\ 0\ 0\ 0\ 1\ 1\ 0)$	$1 + x^4 + x^5 = (1 + x + x^2) \cdot g(x)$
$(0\ 0\ 0\ 1)$	$(0\ 0\ 0\ 1\ 1\ 0\ 1)$	$x^3 + x^4 + x^6 = (x^3) \cdot g(x)$
$(1 \ 0 \ 0 \ 1)$	$(1\ 1\ 0\ 0\ 1\ 0\ 1)$	$1 + x + x^4 + x^6 = (1 + x^3) \cdot g(x)$
$(0\ 1\ 0\ 1)$	$(0\ 1\ 1\ 1\ 0\ 0\ 1)$	$x + x^2 + x^3 + x^6 = (x + x^3) \cdot g(x)$
$(1\ 1\ 0\ 1)$	$(1\ 0\ 1\ 0\ 0\ 1)$	$1 + x^2 + x^6 = (1 + x + x^3) \cdot g(x)$
$(0\ 0\ 1\ 1)$	$(0\ 0\ 1\ 0\ 1\ 1\ 1)$	$x^{2} + x^{4} + x^{5} + x^{6} = (x^{2} + x^{3}) \cdot g(x)$
$(1\ 0\ 1\ 1)$	$(1\ 1\ 1\ 1\ 1\ 1\ 1)$	$1 + x + x^2 + x^3 + x^4 + x^5 + x^6$
		$=(1+x^2+x^3)\cdot g(x)$
$(0\ 1\ 1\ 1)$	$(0\ 1\ 0\ 0\ 0\ 1\ 1)$	$x + x^5 + x^6 = (x + x^2 + x^3) \cdot g(x)$
(1 1 1 1)	$(1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1)$	$1 + x^3 + x^5 + x^6 = (1 + x + x^2 + x^3) \cdot g(x)$

g(x) is a factor of $x^n + 1$

The generator g(x) of a (n, k) cyclic code C is a factor of $x^n + 1$.

Go through proof on own time

g(x) generates a cyclic code Deg(g(x)) = n - k

 $g(x)|x^n + 1$ $\Rightarrow g(x)$ generates an (n, k) cyclic code.

 $x^n + 1 \rightarrow$ numerous factors of degree n - k

Some 'good' codes, others 'bad' codes

6. Systematic encoding of cyclic codes

1
$$\overline{u} = (u_0, u_1, \dots, u_{k-1}) \to u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$$

2 $x^{n-k}u(x) = u_0 x^{n-k} + u_1 x^{n-k+1} + \dots + u_{k-1} x^{n-1}$
3 $x^{n-k}u(x) = a(x)g(x) + b(x)$
 $b(x) = \begin{cases} 0 & x^{n-k}u(x) \in C \\ \mathbf{Deg}(b(x)) < \mathbf{Deg}(g(x)) & x^{n-k}u(x) \notin C \end{cases}$
4 $b(x) + x^{n-k}u(x) = a(x)g(x) \to \text{codeword}$

$$(b_0, b_1, \dots, b_{n-k-1}, \underbrace{u_0, u_1, \dots, u_{k-1}}_{message})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$x^7 + 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1).$$

Two factors of degree 3.

Each factor generates a (7, 4) cyclic code.

8. Generator Matrix

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$G = \begin{bmatrix} g_0 & g_1 & g_2 & \dots & g_{n-k} & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & \dots & g_{n-k} & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & \dots & \dots & g_{n-k} & \dots & 0 \\ \vdots & & & \vdots & & & \vdots \\ 0 & 0 & \dots & 0 & g_0 & g_1 & \dots & \dots & g_{n-k} \end{bmatrix}$$

Generally, G not in systematic form

8. Parity-check Matrix

Consider polynomial h(x) of degree $k \to x^n + 1 = g(x)h(x)$

Define *reciprocal* of h(x) as:

$$x^{k}h(x^{-1}) \triangleq h_{k} + h_{k-1}x + h_{k-1}x^{2} + \ldots + h_{0}x^{k}$$

$$H = \begin{bmatrix} h_k & h_{k-1} & h_{k-2} & \dots & \dots & h_0 & 0 & 0 & \dots & 0 \\ 0 & h_k & h_{k-1} & h_{k-2} & \dots & \dots & h_0 & 0 & \dots & 0 \\ 0 & 0 & h_k & h_{k-1} & \dots & \dots & \dots & h_0 & \dots & 0 \\ \vdots & & & \vdots & & & \vdots \\ 0 & 0 & \dots & 0 & h_k & h_{k-1} & \dots & \dots & h_0 \end{bmatrix}$$

H obtained from $h(x) \rightarrow h(x)$ - parity polynomial of C.

٠

8. Parity-check Matrix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dual Code of C $C \rightarrow g(x)$

Dual code $\rightarrow x^k h(x^{-1})$, $h(x) = (x^n + 1)/g(x)$

Dual code of C is also cyclic

Divide
$$x^{n-k+i}$$
 by $g(x)$ for $i = 0, 1, 2, ..., k-1$

$$x^{n-k+i} = a(x)g(x) + b_i(x)$$
, with
 $b_i(x) = b_{i0} + b_{i1}x + b_{i2}x^2 + \ldots + b_{i,n-k-1}x^{n-k-1}$

$$b_i(x) + x^{n-k+i}$$
 is a codeword in C.

 $b_i(x) + x^{n-k+i}$ is a codeword in C.

$$G = \begin{bmatrix} b_{00} & b_{01} & b_{02} & \dots & b_{0,n-k-1} & 1 & 0 & 0 & \dots & 0 \\ b_{10} & b_{11} & b_{12} & \dots & b_{1,n-k-1} & 0 & 1 & 0 & \dots & 0 \\ b_{20} & b_{21} & b_{22} & \dots & b_{2,n-k-1} & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & & & & \\ b_{k-1,0} & b_{k-1,1} & b_{k-1,2} & \dots & b_{k-1,n-k-1} & 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corresponding parity-check matrix for C is

Corresponding parity-check matrix for C is

$$H = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & b_{00} & b_{10} & \dots & b_{k-1,0} \\ 0 & 1 & 0 & \dots & 0 & b_{01} & b_{11} & \dots & b_{k-1,1} \\ 0 & 0 & 1 & \dots & 0 & b_{02} & b_{12} & \dots & b_{k-1,2} \\ \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 & b_{0,n-k-1} & b_{1,n-k-1} & \dots & b_{k-1,n-k-1} \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(7,4) cyclic code generated by $g(x) = 1 + x + x^3$.

Calculate the *i*th basis vector v_i of G by dividing x^{3+i} by g(x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(7,4) cyclic code generated by $g(x) = 1 + x + x^3$.

Calculate the *i*th basis vector v_i of G by dividing x^{3+i} by g(x).

$$\begin{array}{rcl} x^3 &=& g(x) + (1+x) \\ x^4 &=& xg(x) + (x+x^2) \\ x^5 &=& (x^2+1)g(x) + (1+x+x^2) \\ x^6 &=& (x^3+x+1)g(x) + (1+x^2). \end{array}$$

$$\begin{array}{rcl} v_0(x) &=& 1+x+x^3\\ v_1(x) &=& x+x^2+x^4\\ v_2(x) &=& 1+x+x^2+x^5\\ v_3(x) &=& 1+x^2+x^6, \end{array}$$

•

$$G = \begin{bmatrix} \overline{v}_0 \\ \overline{v}_1 \\ \overline{v}_2 \\ \overline{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

11. Syndrome computation and error detection

Syndrome calculation

r(x) = a(x)g(x) + s(x)

$$n-k$$
 coefficients of $s(x) \rightarrow$ syndrome \overline{s} .

Go through proof on own time

Syndrome of cyclically shifted vector s(x) syndrome of $r(x) = r_0 + r_1x + \ldots + r_{n-1}x^{n-1}$.

Remainder $s^{(1)}(x) \rightarrow \text{dividing } xs(x)$ by $g(x) = \text{syndrome of } r^{(1)}(x)$

Go through proof on own time

12. Error Correction

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Syndrome decoding method is used to decode cyclic codes.

13. Error Correction - Example

(7,4) cyclic code C generated by $g(x) = 1 + x + x^3$.

 $d_{min} = 3$

- $2^7 = 128$ vectors in \mathbb{Z}_2^7
- $2^4 = 16$ codewords in $C \rightarrow 128/16 = 8$ cosets for C.

The seven single-error patterns and the all-zero vector form the coset leaders of the decoding table.

13. Error Correction - Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table: Error patterns and the corresponding syndromes

Error pattern	Syndrome

13. Error Correction - Example

Table: Error patterns and the corresponding syndromes

Error pattern	Syndrome
$e_0(x) = x^0 = 1$	s(x) = 1
$e_1(x) = x^1$	s(x) = x
$e_2(x) = x^2$	$s(x) = x^2$
$e_3(x) = x^3$	s(x) = 1 + x
$e_4(x) = x^4$	$s(x) = x + x^2$
$e_5(x) = x^5$	$s(x) = 1 + x + x^2$
$e_6(x) = x^6$	$s(x) = 1 + x^2$

$$\begin{aligned} r(x) &= 1 + x + x^4. \\ r(x) &= xg(x) + x^2 + 1 \to s(x) = x^2 + 1 \to e_6(x) \\ c(x) &\to r(x) + e_6(x) = 1 + x + x^4 + x^6. \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cyclic codes are very effective for detecting random as well as burst errors.

Burst error

An error pattern \overline{e} where all the errors are contained in *I* consecutive positions is called a burst error of length *I*.

Example: error pattern $(0\ 1\ 0\ 1\ 0\ 1\ 0\ 0) \rightarrow$ burst error of length 5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

End-around burst

For a cyclic code, an error pattern with errors confined to i high-order positions and l - i low-order positions is also regarded as a burst of length l and is called an *end-around burst*.

Example: error pattern (0 1 0 1 0 0 1) \rightarrow end-around burst of length 5.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Burst error length

An (n, k) cyclic code is capable of detecting any error bursts of length n - k or less, including the end-around bursts. NB: Proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

bursts of length n - k + 1

The probability of an undetected error burst of length n - k + 1 is $2^{-(n-k-1)}$. (No Proof)

bursts longer than n - k + 1

The probability of an undetected error burst of length l > n - k + 1 is $2^{-(n-k)}$. (No Proof)