Source Coding

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Information Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Cryptography, Information Theory and Error-Correction," Bruen A.A., Forcinito M.A.

Chapter 11

Overview

Lempel-Ziv Coding

Tuts

1. Lempel-Ziv Coding: Introduction

In large, replaced Huffman coding

For English text, LZ obtains 55 % compression, Huffman 43 %

Huffman doesn't exploit statistical dependencies as well as LZ.

Disadvantage of Huffman \rightarrow need to know statistics a priori

Uses: ZIP, UNZIP, etc.

2. Lempel-Ziv Coding: Operation

Parse source stream into segments that are the shortest subsequences not yet encountered.

New subsequences are longer by one symbol than previously encountered sequences \rightarrow compression by storing pointers to data

Each new subsequence not yet encountered will be equal to an old subsequence with a single letter added on at the end.

Lempel-Ziv Encoding: Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Alphabet $\mathcal{A} = \{x, y\}$

Stream:

xyyyxxyxxxxyxyxxxxx

Lempel-Ziv Coding: Example

・ロト・日本・モート モー うへぐ

Proceeding from left, break up remaining stream into segments that represent the shortest subsequences not yet encountered.

Index subsequences

X	у	уу	XX	уx	XXX	уху	хху	XXXX
1	2	3	4	5	6	7	8	9

Lempel-Ziv Coding: Example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Format subsequences into $i \cdot a$, $i \rightarrow$ index, $a \in \mathcal{A}$

Label	0x	0y	2y	1x	2x	4x	5y	4y	6x
Slots	01	2	3	4	5	6	7	8	9

Empty string {} corresponds to 0, also indicate start of text.

1. Source extension

Given a source Γ with source words chosen from \mathcal{A} we can construct a new source, called the sth order extension of Γ , denoted by Γ^{s} .

Alphabet of $\Gamma^s \rightarrow$ all possible strings of length *s* chosen from the alphabet \mathcal{A} .

If Z is a word in Γ^s then $Z = y_1, y_2, \ldots, y_s$ with y_1, y_2, \ldots, y_s in \mathcal{A} .

Probability of $Z = Pr(y_1) \cdots Pr(y_s)$.

Question Exam 2008

Consider the following string of data:

BDBGFBAGBDFGFABGGBGABFAABADBAA.

- Determine the entropy of the source based on the sample string. [3]
- Encode the text using a Huffman code. [7]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Carry out the Huffman encoding for the source with probabilities 0.45, 0.2, 0.15, 0.1, 0.1

Find a Huffman code for source probabilities 0.1, 0.15, 0.15, 0.2, 0.4

Let X be the source which emits heads with a probability 0.8 and tails with a probability 0.2. Find an optimal encoding for X^2 , the second extension of X. What is the average word length?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Find an optimal encoding for X^3 , the third extension of X. What is the average word length?

(日) (日) (日) (日) (日) (日) (日) (日)

If a source with N source words is encoded as an instantaneous code and the code word lengths are l_1, l_2, \ldots, l_N , show that $l_1 + l_2 + \ldots + l_N \ge N \log_2(N)$