Source Coding

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

Information Theory

"Cryptography, Information Theory and Error-Correction," Bruen A.A., Forcinito M.A.

Chapter 11

Overview

1. Introduction

Consider a source with:

- Alphabet $\mathcal{A}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
- Each symbol x_{i} has probability $p_{i}, 0 \leq p_{i} \leq 1$ of occurring in the message.
$p_{1}+p_{2}+\ldots+p_{m}=1,0 \leq p_{i} \leq 1$.
Example of a source - English language
- Alphabet size $m=26$ (or $m=27$)
- Probabilities of symbols are well known and tabulated.
- Eg. letter a has probability $p_{1}=0.064$

1. Introduction

Memoryless source:

- Each symbol x_{i} is an independent and identically distributed random variable (iid).
- Real life sources are seldom memoryless and are modeled as ergodic processes.

1. Source extension

Given a source Γ with source words chosen from \mathcal{A} we can construct a new source, called the $s^{\text {th }}$ order extension of Γ, denoted by Γ^{s}.

Alphabet of $\Gamma^{s} \rightarrow$ all possible strings of length s chosen from the alphabet \mathcal{A}.

If Z is a word in Γ^{s} then $Z=y_{1}, y_{2}, \ldots, y_{s}$ with $y_{1}, y_{2}, \ldots, y_{s}$ in \mathcal{A}.
Probability of $Z=\operatorname{Pr}\left(y_{1}\right) \cdots \operatorname{Pr}\left(y_{s}\right)$.

1. Source extension

Example: Let $\mathcal{A}=\left\{x_{1}, x_{2}\right\}$ with $p_{1}=\operatorname{Pr}\left(x_{1}\right)=0.4$ and $p_{2}=\operatorname{Pr}\left(x_{2}\right)=0.6$.

Second extension $\mathcal{A}^{2} \Leftrightarrow \mathcal{A}^{2}=\left\{x_{1} x_{1}, x_{1} x_{2}, x_{2} x_{1}, x_{2} x_{2}\right\}$
Probabilities $0.16,0.24,0.24$ and 0.36 .
Sometimes more efficient to encode blocks of consecutive source words rather than individual source words \Leftrightarrow block coding.

1. Source extension

By independence:
Entropy of an Extension
If Γ has alphabet \mathcal{A}, and Γ^{s} is the s'th order extension of Γ, then

$$
H\left(\Gamma^{s}\right)=s H(\Gamma)
$$

3. Encodings

Encoding f : maps source words from \mathcal{A} to a string with symbols in alphabet Y.

Example of an encoding:

- $f \rightarrow$ ASCII
- Y might be the binary alphabet $(Y=\{0,1\})$
- \mathcal{A} might be the upper-case English alphabet

3. Encodings

Condition for encoding: x_{i}, x_{j} with $i \neq j, f\left(x_{i}\right) \neq f\left(x_{j}\right)$.
Message \rightarrow any string of source words from $\mathcal{A}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$.
Consider $M=x_{3} x_{1} x_{3}$.
Encoding $\rightarrow f(M)=f\left(x_{3}\right) f\left(x_{1}\right) f\left(x_{3}\right)$
Code words \rightarrow strings over Y of the form $f\left(x_{i}\right), 1 \leq i \leq m$
Code $C \rightarrow$ set of code words $f\left(x_{i}\right)$

3. Encodings

Example:
\mathcal{A} consist of the three source words u, v and w
$\operatorname{Pr}(u)=0.3, \operatorname{Pr}(v)=0.5$ and $\operatorname{Pr}(w)=0.2$
$H(\mathcal{A})=$

3. Encodings

Example:
\mathcal{A} consist of the three source words u, v and w $\operatorname{Pr}(u)=0.3, \operatorname{Pr}(v)=0.5$ and $\operatorname{Pr}(w)=0.2$

$$
\begin{aligned}
H(\mathcal{A}) & =(0.3) \log _{2}(1 / 0.3)+(0.5) \log _{2}(1 / 0.5)+(0.2) \log _{2}(1 / 0.2) \\
& =0.5211+0.5+0.4644 \\
& =1.4855
\end{aligned}
$$

3. Encodings

Encoding f from \mathcal{A} to Y with $Y=\{0,1\}$ is given as follows:

$$
f(u)=01, f(v)=1 \text { and } f(w)=101
$$

Then if $m=v u, f(m)=f(v) f(u)=101$.
Average length of an encoded source word:

3. Encodings

Encoding f from \mathcal{A} to Y with $Y=\{0,1\}$ is given as follows:

$$
f(u)=01, f(v)=1 \text { and } f(w)=101
$$

Then if $m=v u, f(m)=f(v) f(u)=101$.
Average length of an encoded source word:
$(0.3)(2)+(0.5)(1)+(0.2)(3)=1.7$.

3. Uniquely decipherable

Encoding $f \Leftrightarrow$ uniquely decipherable (u.d.) if there do not exist two different messages M_{1} and M_{2} with $f\left(M_{1}\right)=f\left(M_{2}\right)$.

Previous example f is not $u . d . ~ \rightarrow f(v u)=f(w)=101$.
Encoding f is an instantaneous code (or prefix code) if there do not exist two code words x_{i} and x_{j} such that $f\left(x_{i}\right)$ is a prefix of $f\left(x_{j}\right)$.

Thus, a prefix code can be uniquely decoded from left to right without "look ahead".

3. Encodings

Lemma: If f is instantaneous, then f is u.d. (Leave the proof)
Lemma: There exist u.d. codes which are not instantaneous. (Leave the proof)

Example: $\mathcal{A}=\{a, b\}, f(a)=1, f(b)=10$
$f(a)$ is a prefix of $f(b)$, but code is still u.d.
Prefix code can be decoded "on line" moving from left to right.

3. Kraft's inequality

Necessary and sufficient condition for the existence of an instantaneous code:

$$
\sum_{i=1}^{n} 2^{-l_{i}} \leq 1
$$

where I_{i} is the word-lengths.
Proof not for examination

3. Maximum information

Theorem: $H(x) \leq \log _{2} n$ with equality if and only if $p_{1}=p_{2}=\ldots p_{n}=1 / n$ so that X is equiprobable.

In order to maximise the entropy, make the probabilities equal.
(Proof not for examination)

3. McMillan's inequality

Theorem: A necessary and sufficient condition for the existence of a u.d. code C with codewords of length $I_{1}, l_{2}, \ldots, I_{n}$ is

$$
\sum_{i=1}^{n} 2^{-l_{i}} \leq 1
$$

(Proof not for examination)

3. Noiseless coding Theorem

Theorem: If a memoryless source has entropy H then the average length of a binary, uniquely decipherable, encoding of that source is at least H.

Moreover, there exist a code having average word-length less than $1+H$, on the assumption that the emission probability p_{i} of each source word is positive.
(Proof not for examination)

Block Coding, The Oracle, Yes-No
 Questions

Go through on own time

Optimal Codes

Not for Examination

Huffman Coding

Huffman Code C:

- Prefix code
- $L(C) \leq L\left(C_{1}\right)$ (C_{1} any code that is u.d.)

Huffman Coding

Has a source $S=S_{0}$ with source words $\mathcal{A}=\mathcal{A}_{0}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
Have that $p_{1} \geq p_{2} \geq p_{3} \ldots \geq p_{m}$

Huffman Coding

Huffman Coding

Step 1: Merge two source words with the smallest probability
Thus, merge x_{m-1} and x_{m} to form new "symbol" W_{1} with probability $y=p_{m}+p_{m-1}$.

Huffman Coding

Algorithm
(1) "Combine" two source words with smallest probability into a new source word
(2) Construct the resulting graph
(3) If number of source words >1, Go to step 1 .

