Source Coding

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Information Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Cryptography, Information Theory and Error-Correction," Bruen A.A., Forcinito M.A.

Chapter 11

Overview

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

1. Introduction

Consider a source with:

- Alphabet $\mathcal{A} = \{x_1, x_2, \dots, x_m\}$
- Each symbol x_i has probability p_i, 0 ≤ p_i ≤ 1 of occurring in the message.

$$p_1 + p_2 + \ldots + p_m = 1, \ 0 \le p_i \le 1.$$

Example of a source - English language

- Alphabet size m = 26 (or m = 27)
- Probabilities of symbols are well known and tabulated.
- Eg. letter *a* has probability $p_1 = 0.064$

1. Introduction

Memoryless source:

- Each symbol x_i is an independent and identically distributed random variable (iid).
- Real life sources are seldom memoryless and are modeled as ergodic processes.

1. Source extension

Given a source Γ with source words chosen from \mathcal{A} we can construct a new source, called the sth order extension of Γ , denoted by Γ^{s} .

Alphabet of $\Gamma^s \rightarrow$ all possible strings of length *s* chosen from the alphabet \mathcal{A} .

If Z is a word in Γ^s then $Z = y_1, y_2, \ldots, y_s$ with y_1, y_2, \ldots, y_s in \mathcal{A} .

Probability of $Z = Pr(y_1) \cdots Pr(y_s)$.

1. Source extension

Example: Let
$$\mathcal{A} = \{x_1, x_2\}$$
 with $p_1 = Pr(x_1) = 0.4$ and $p_2 = Pr(x_2) = 0.6$.

Second extension $\mathcal{A}^2 \Leftrightarrow \mathcal{A}^2 = \{x_1x_1, x_1x_2, x_2x_1, x_2x_2\}$

Probabilities 0.16, 0.24, 0.24 and 0.36.

Sometimes more efficient to encode blocks of consecutive source words rather than individual source words \Leftrightarrow block coding.

1. Source extension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

By independence:

Entropy of an Extension

If Γ has alphabet \mathcal{A} , and Γ^s is the s'th order extension of Γ , then

$$H(\Gamma^{s}) = sH(\Gamma)$$

Encoding f: maps source words from A to a string with symbols in alphabet Y.

Example of an encoding:

- $f \rightarrow \mathsf{ASCII}$
- Y might be the binary alphabet $(Y = \{0, 1\})$
- \mathcal{A} might be the upper-case English alphabet

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Condition for encoding: x_i , x_j with $i \neq j$, $f(x_i) \neq f(x_j)$.

Message \rightarrow any string of source words from $\mathcal{A} = \{x_1, x_2, \dots, x_m\}$.

Consider $M = x_3 x_1 x_3$.

Encoding $\rightarrow f(M) = f(x_3)f(x_1)f(x_3)$

Code words \rightarrow strings over Y of the form $f(x_i)$, $1 \le i \le m$

Code $C \rightarrow$ set of code words $f(x_i)$

Example: A consist of the three source words u, v and wPr(u) = 0.3, Pr(v) = 0.5 and Pr(w) = 0.2

 $H(\mathcal{A}) =$

Example: \mathcal{A} consist of the three source words u, v and wPr(u) = 0.3, Pr(v) = 0.5 and Pr(w) = 0.2

$$H(\mathcal{A}) = (0.3) \log_2(1/0.3) + (0.5) \log_2(1/0.5) + (0.2) \log_2(1/0.2)$$

= 0.5211 + 0.5 + 0.4644
= 1.4855

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Encoding f from A to Y with $Y = \{0, 1\}$ is given as follows:

$$f(u) = 01, f(v) = 1 \text{ and } f(w) = 101$$

Then if
$$m = vu$$
, $f(m) = f(v)f(u) = 101$.

Average length of an encoded source word:

Encoding f from A to Y with $Y = \{0, 1\}$ is given as follows:

$$f(u) = 01, f(v) = 1 \text{ and } f(w) = 101$$

Then if
$$m = vu$$
, $f(m) = f(v)f(u) = 101$.

Average length of an encoded source word:

(0.3)(2) + (0.5)(1) + (0.2)(3) = 1.7.

3. Uniquely decipherable

Encoding $f \Leftrightarrow$ uniquely decipherable (u.d.) if there do not exist two different messages M_1 and M_2 with $f(M_1) = f(M_2)$.

Previous example f is not u.d. $\rightarrow f(vu) = f(w) = 101$.

Encoding f is an instantaneous code (or prefix code) if there do not exist two code words x_i and x_j such that $f(x_i)$ is a prefix of $f(x_j)$.

Thus, a prefix code can be uniquely decoded from left to right without "look ahead".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma: If f is instantaneous, then f is u.d. (Leave the proof)

Lemma: There exist u.d. codes which are not instantaneous. (Leave the proof)

Example:
$$A = \{a, b\}$$
, $f(a) = 1$, $f(b) = 10$

f(a) is a prefix of f(b), but code is still u.d.

Prefix code can be decoded "on line" moving from left to right.

3. Kraft's inequality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Necessary and sufficient condition for the existence of an instantaneous code:

$$\sum_{i=1}^n 2^{-l_i} \le 1$$

where l_i is the word-lengths.

Proof not for examination

3. Maximum information

Theorem: $H(x) \leq \log_2 n$ with equality if and only if $p_1 = p_2 = \dots p_n = 1/n$ so that X is equiprobable.

In order to maximise the entropy, make the probabilities equal.

(Proof not for examination)

3. McMillan's inequality

Theorem: A necessary and sufficient condition for the existence of a u.d. code C with codewords of length l_1, l_2, \ldots, l_n is

$$\sum_{i=1}^n 2^{-l_i} \le 1$$

(Proof not for examination)

3. Noiseless coding Theorem

Theorem: If a memoryless source has entropy H then the average length of a binary, uniquely decipherable, encoding of that source is at least H.

Moreover, there exist a code having average word-length less than 1 + H, on the assumption that the emission probability p_i of each source word is positive.

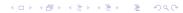
(Proof not for examination)

Block Coding, The Oracle, Yes-No Questions

Go through on own time

Optimal Codes

Not for Examination



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Huffman Code C:

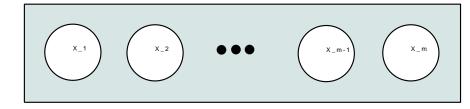
- Prefix code
- $L(C) \leq L(C_1)$ (C_1 any code that is u.d.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Has a source $S = S_0$ with source words $\mathcal{A} = \mathcal{A}_0 = \{x_1, x_2, \dots, x_m\}$

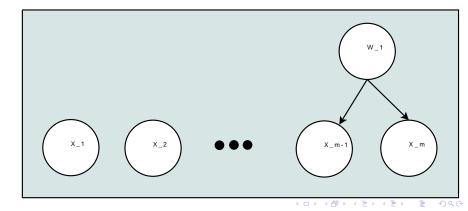
Have that $p_1 \geq p_2 \geq p_3 \ldots \geq p_m$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Step 1: Merge two source words with the smallest probability

Thus, merge x_{m-1} and x_m to form new "symbol" W_1 with probability $y = p_m + p_{m-1}$.



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Algorithm

- "Combine" two source words with smallest probability into a new source word
- 2 Construct the resulting graph
- **3** If number of source words > 1, Go to step 1.