Erasure Decoding of Reed-Solomon Codes

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

Overview

Erasure Decoding RS - McAuley

Example: RS - McAuley

Erasure Decoding RS - Rizzo

Example: RS - Rizzo

1. Erasure Decoding RS - McAuley

a set of equations can be formed by \rightarrow every codeword $c \in C(x)$, $C(x)$ a (n, k) RS code: $c(x)=m(x) g(x)$
$g(x) \rightarrow$ generator polynomial $\rightarrow n-k$ roots that are consecutive powers of α

$$
\begin{equation*}
g(x)=\left(x-\alpha^{0+\beta}\right)\left(x-\alpha^{1+\beta}\right)\left(x-\alpha^{2+\beta}\right) \ldots\left(x-\alpha^{n-k-1+\beta}\right) \tag{1}
\end{equation*}
$$

(β is some offset. Normally $\beta=1$)

1. Erasure Decoding RS - McAuley

$\therefore c(x) \in C=\langle g(x)\rangle$ has the same $n-k$ roots as $g(x)$
form up to $n-k$ linear equations by substituting roots of $g(x)$ into received polynomial \rightarrow result of each substitution should be zero.

McAuley used Gaussian elimination to solve the set of linear equations.

2. Example: RS - McAuley

As a simple example, consider the Reed-Solomon code with the following parameters:

- $n=7$ (Code length)
- $k=4$ (Number of data elements)
- $r=n-k=3$ (Number of redundant elements)
- $d_{\text {min }}=n-k+1=4$, thus 3 erasures can be corrected.
- $G F\left(2^{3}\right)$ constructed with primitive polynomial $p(x)=x^{3}+x+1$
- $g(x)=\left(x-\alpha^{1}\right)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)=x^{3}+\alpha^{6} x^{2}+\alpha^{1} x+\alpha^{6}$
- $d(x)=\alpha^{3} x^{3}+\alpha^{6} x^{2}+1$

2. Example: RS - McAuley

The code polynomial after systematic encoding is:
$c(x)=$

2. Example: RS - McAuley

The code polynomial after systematic encoding is:

$$
\begin{align*}
c(x)= & d(x) \cdot x^{3}+\left(d(x) \cdot x^{3} \quad \bmod g(x)\right) \\
= & \left(\alpha^{3} x^{6}+\alpha^{6} x^{5}+1 x^{3}\right)+ \\
& \left(\left(\alpha^{3} x^{6}+\alpha^{7} x^{5}+1 x^{3}\right) \bmod \left(x^{3}+\alpha^{6} x^{2}+\alpha^{1} x+\alpha^{6}\right)\right) \\
= & \alpha^{3} x^{6}+\alpha^{6} x^{5}+1 x^{3}+\alpha^{5} x^{2}+\alpha^{1} x+\alpha^{2} . \tag{2}
\end{align*}
$$

2. Example: RS - McAuley

Assume coefficients of the terms of degree 2,5 and 6 are erased $(\mathbb{E}=\{2,5,6\}) .:$

$$
\begin{equation*}
r(x)=0 x^{6}+0 x^{5}+1 x^{3}+0 x^{2}+\alpha^{1} x+\alpha^{2} \tag{3}
\end{equation*}
$$

Substitute roots α^{1}, α^{2} and α^{3} into $r(x)$ (Replace the erased coefficients with variables A, B and C):

$$
\begin{aligned}
& A\left(\alpha^{1}\right)^{6}+B\left(\alpha^{1}\right)^{5}+1\left(\alpha^{1}\right)^{3}+C\left(\alpha^{1}\right)^{2}+\alpha^{1}\left(\alpha^{1}\right)+\alpha^{2}=0 \\
& A\left(\alpha^{2}\right)^{6}+B\left(\alpha^{2}\right)^{5}+1\left(\alpha^{2}\right)^{3}+C\left(\alpha^{2}\right)^{2}+\alpha^{1}\left(\alpha^{2}\right)+\alpha^{2}=0 \\
& A\left(\alpha^{3}\right)^{6}+B\left(\alpha^{3}\right)^{5}+1\left(\alpha^{3}\right)^{3}+C\left(\alpha^{3}\right)^{2}+\alpha^{1}\left(\alpha^{3}\right)+\alpha^{2}=0
\end{aligned}
$$

2. Example: RS - McAuley

These equations can be reduced to the following set of linear equations.

$$
\begin{aligned}
& \alpha^{6} \cdot A+\alpha^{5} \cdot B+\alpha^{2} \cdot \boldsymbol{C}=\alpha^{3} \\
& \alpha^{5} \cdot A+\alpha^{3} \cdot B+\alpha^{4} \cdot \boldsymbol{C}=\alpha^{1} \\
& \alpha^{4} \cdot A+\alpha^{1} \cdot B+\alpha^{6} \cdot \boldsymbol{C}=\alpha^{4}
\end{aligned}
$$

Solving the set of linear equations yields $C=\alpha^{5}, B=\alpha^{6}$ and $A=\alpha^{3}$, which gives the correct coefficients for the erased terms. (Homework, Matlab/Octave/Magma/GAP)

3. Erasure Decoding RS - Rizzo

1. Determine the submatrix G^{*} of the generator matrix
2. Compute the inverse of a G^{*}
3. Multiply G^{*} by the compacted received vector \bar{b} of length k.

3. Erasure Decoding RS - Rizzo

G^{*} is constructed as follows.
Suppose we receive a vector \bar{r} with received indices $M=\left\{j_{0}, j_{1}, \ldots, j_{k-1}\right\}$, i.e. $|M|=k$.

Construct a submatrix G^{*} by picking the columns $j_{0}, j_{1} \ldots, j_{k-1}$, $G^{*}=\left[C_{j_{0}}, C_{j_{1}}, \cdots, C_{j_{k-1}}\right]$, where C_{i} is the i-th column of G.

The multiplication of the compacted received vector $\bar{b}=\left(r_{j_{0}}, r_{j_{1}}, \cdots, r_{j_{k-1}}\right)$ by $\left(G^{*}\right)^{-1}$ results in the original information set \mathcal{I}.

4. Example: RS - Rizzo

Consider the same code and parameters as in the Example of McAuley.

The systematic generator matrix for this code is given as

$$
G=
$$

4. Example: RS - Rizzo

Consider the same code and parameters as in the Example of McAuley.

The systematic generator matrix for this code is given as

$$
G=\left[\begin{array}{lllllll}
\alpha^{6} & \alpha^{1} & \alpha^{6} & 1 & 0 & 0 & 0 \tag{4}\\
\alpha^{5} & \alpha^{2} & \alpha^{6} & 0 & 1 & 0 & 0 \\
\alpha^{5} & \alpha^{4} & \alpha^{3} & 0 & 0 & 1 & 0 \\
\alpha^{2} & \alpha^{0} & \alpha^{1} & 0 & 0 & 0 & 1
\end{array}\right]
$$

4. Example: RS - Rizzo

Transmitted codeword $\rightarrow \bar{c}=\left(\alpha^{2}, \alpha^{1}, \alpha^{5}, 1,0, \alpha^{6}, \alpha^{3}\right)$
Received vector \bar{r} is

$$
\begin{equation*}
\bar{r}=\left(\alpha^{2}, \alpha^{1}, 0,1,0,0,0\right) \tag{5}
\end{equation*}
$$

where the second, fifth and sixth elements have been erased.
elements in positions $\{0,1,3,4\}$ are correctly received.
Form the compacted received vector \bar{b} as $\left(\alpha^{2}, \alpha^{1}, 1,0\right)$ and the matrix G^{*} as

$$
G^{*}=\left[\begin{array}{llll}
\alpha^{6} & \alpha^{1} & 1 & 0 \tag{6}\\
\alpha^{5} & \alpha^{2} & 0 & 1 \\
\alpha^{5} & \alpha^{4} & 0 & 0 \\
\alpha^{2} & \alpha^{0} & 0 & 0
\end{array}\right]
$$

4. Example: RS - Rizzo

The matrix $\left(G^{*}\right)^{-1}$ is computed as

$$
\left(G^{*}\right)^{-1}=\left[\begin{array}{cccc}
0 & 0 & \alpha^{6} & \alpha^{3} \tag{7}\\
0 & 0 & \alpha^{1} & \alpha^{4} \\
1 & 0 & \alpha^{3} & \alpha^{3} \\
0 & 1 & \alpha^{6} & \alpha^{5}
\end{array}\right]
$$

Homework

4. Example: RS - Rizzo

Decoding is accomplished by the following multiplication

$$
\begin{align*}
\mathcal{I}^{*} & =\bar{b} \cdot\left(G^{*}\right)^{-1} \\
& =\left(\alpha^{2}, \alpha^{1}, 1,0\right)\left[\begin{array}{cccc}
0 & 0 & \alpha^{6} & \alpha^{3} \\
0 & 0 & \alpha^{1} & \alpha^{4} \\
1 & 0 & \alpha^{3} & \alpha^{3} \\
0 & 1 & \alpha^{6} & \alpha^{5}
\end{array}\right] \\
& =\left(1,0, \alpha^{6}, \alpha^{3}\right) \tag{8}
\end{align*}
$$

yielding the original information set $\mathcal{I}^{*}=\mathcal{I}$.

Overview

Erasure Decoding RS - McAuley

Example: RS - McAuley

Erasure Decoding RS - Rizzo

Example: RS - Rizzo

