Hash Functions

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

(ロ)、(型)、(E)、(E)、 E) の(の)

Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hash functions - Introduction

Uses of hash functions

Length of hash

Hash Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Hash is a one-way function \rightarrow almost impossible to decrypt a hash into the original message

Hash function produces fixed size output, regardless of the size of input block

Encryption process which yields a fingerprint / signature

Finding hash is easy, finding message corresponding to hash is practically impossible

Why should hash be unique?

Why should hash be unique?

Alice signs M by h = H(M)

Mallory produces M' where H(M) = H(M')

Mallory can claim that Alice signed M', where M' favours Mallory and defrauds Alice

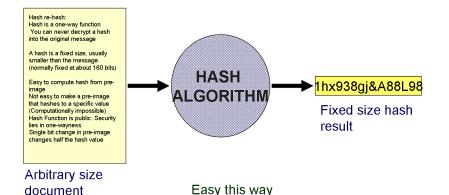
Mathematically:

A. One-way hash function H(M) operates on message M of any length, returns fixed length hash value h:

$$h = H(M)$$

B. Characteristics:

- Given *M*, computationally easy to compute *h*
- Given h, hard to compute arbitrary message M such that H(M) = h
- Given M, it is hard to find M' such that H(M) = H(M')



Impossible this way

2. Uses of hash functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Passwords

Login	Password $\#$
Bob	tu\$jg
Alice	GG\$\$h3
James	×l5!\$\$

No need to store actual password, store only hash

2. Uses of hash functions

2. Signing documents

Hash function is unique to particular document \rightarrow 'fingerprint'

Cannot invent a document corresponding to a given hash

When computing hash of document \rightarrow equivalent to signing document itself

Computationally cheaper to compute hash than public-key encrypt whole document

Authentication and integrity

2. Uses of hash functions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. Signing documents

Hash re-hash Hash is a one-way function You can never decrypt a hash into the original message A hash is a fixed size, usually smaller than the message (normally fixed at about 160 bits) Easy to compute hash from preimage Not easy to make a pre-image that hashes to a specific value (Computationally impossible) Hash Function is public: Security lies in one-wayness Single bit change in pre-image changes half the hash value

1hx938gj&A88L98

Hashes subject to "birthday attack" (birthday paradox)

Two approaches:

Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed = $2^{hashsize}/2$

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed = $2^{hashsize/2}$

Due to birthday attack \rightarrow hash length should be twice as long to secure against brute force attack

Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed = $2^{hashsize}/2$

Derive an equation for the probability q(n) for the naive approach (for sharing a birthday).

Show that for the probability q(n) to exceed 50 % we need n = 253.

Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed = $2^{hashsize}/2$

Derive an equation for the probability q(n) for the naive approach (for sharing a birthday).

Show that for the probability q(n) to exceed 50 % we need n = 253.

$$q(n) = 1 - \left(\frac{365 - 1}{365}\right)^n$$

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed = $2^{hashsize/2}$

Derive an equation for the probability p(n) for the less naive approach (any two persons sharing a birthday).

Show that for the probability p(n) to exceed 50 % we need n = 23.

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed = $2^{hashsize/2}$

Derive an equation for the probability p(n) for the less naive approach (any two persons sharing a birthday).

Show that for the probability p(n) to exceed 50 % we need n = 23.

$$p(n) = 1 - \left(\frac{365!}{365^n(365-n)!}\right)$$

4. Hash Functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\text{MD5} \rightarrow \text{Discussed}$ in notes \Rightarrow Not for examination

SNERFU

N-HASH

MD4

MD2

etc.

Summary

Hash functions - Introduction

Uses of hash functions

Length of hash

Hash Functions