Hash Functions

Data and Information Management: ELEN 3015

School of Electrical and Information Engineering,
University of the Witwatersrand

Overview

Hash functions - Introduction

Uses of hash functions
Length of hash
Hash Functions

1. Hash functions - Introduction

Hash is a one-way function \rightarrow almost impossible to decrypt a hash into the original message

Hash function produces fixed size output, regardless of the size of input block

Encryption process which yields a fingerprint / signature
Finding hash is easy, finding message corresponding to hash is practically impossible

1. Hash functions - Introduction

Why should hash be unique?

1. Hash functions - Introduction

Why should hash be unique?

Alice signs M by $h=H(M)$
Mallory produces M^{\prime} where $H(M)=H\left(M^{\prime}\right)$
Mallory can claim that Alice signed M^{\prime}, where M^{\prime} favours Mallory and defrauds Alice

1. Hash functions - Introduction

Mathematically:
A. One-way hash function $H(M)$ operates on message M of any length, returns fixed length hash value h :

$$
h=H(M)
$$

B. Characteristics:

- Given M, computationally easy to compute h
- Given h, hard to compute arbitrary message M such that $H(M)=h$
- Given M, it is hard to find M^{\prime} such that $H(M)=H\left(M^{\prime}\right)$

1. Hash functions - Introduction

2. Uses of hash functions

1. Passwords

Login	Password \#
Bob	tu\$jg
Alice	GG\$\$h3
James	xl5!\$\$

No need to store actual password, store only hash

2. Uses of hash functions

2. Signing documents

Hash function is unique to particular document \rightarrow 'fingerprint'
Cannot invent a document corresponding to a given hash
When computing hash of document \rightarrow equivalent to signing document itself

Computationally cheaper to compute hash than public-key encrypt whole document

Authentication and integrity

2. Uses of hash functions

2. Signing documents

```
Hash re-hash:
Hash is a one-way function
    You can never decrypt a hash into
the original message
A hash is a fixed size, usually
smaller than the message (normally
fixed at about }160\mathrm{ bits)
Easy to compute hash from pre-
image
Not easy to make a pre-image that
hashes to a specific value
(Computationally impossible)
Hash Function is public: Security
lies in one-wayness
Single bit change in pre-image
changes half the hash value
1hx938gj&A88L98
```


3. Length of hash

Hashes subject to "birthday attack" (birthday paradox)
Two approaches:
Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize }} / 2$

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize } / 2}$

Due to birthday attack \rightarrow hash length should be twice as long to secure against brute force attack

3. Length of hash

Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize }} / 2$

Derive an equation for the probability $q(n)$ for the naive approach (for sharing a birthday).

Show that for the probability $q(n)$ to exceed 50% we need $n=$ 253.

3. Length of hash

Naïve approach \rightarrow Birthday paradox where someone tries to find another person with same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize }} / 2$

Derive an equation for the probability $q(n)$ for the naive approach (for sharing a birthday).

Show that for the probability $q(n)$ to exceed 50% we need $n=$ 253.

$$
q(n)=1-\left(\frac{365-1}{365}\right)^{n}
$$

3. Length of hash

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize } / 2}$

Derive an equation for the probability $p(n)$ for the less naive approach (any two persons sharing a birthday).

Show that for the probability $p(n)$ to exceed 50% we need $n=23$.

3. Length of hash

Less naïve approach \rightarrow Birthday paradox where someone tries to find any two people in a room with the same birthday \rightarrow number of documents created and hashed $=2^{\text {hashsize } / 2}$

Derive an equation for the probability $p(n)$ for the less naive approach (any two persons sharing a birthday).

Show that for the probability $p(n)$ to exceed 50% we need $n=23$.

$$
p(n)=1-\left(\frac{365!}{365^{n}(365-n)!}\right)
$$

4. Hash Functions

MD5 \rightarrow Discussed in notes \Rightarrow Not for examination

SNERFU

N-HASH

MD4

MD2
etc.

Summary

Hash functions - Introduction

Uses of hash functions
Length of hash
Hash Functions

