School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg ELEN3015 - Data and Information Management

Forward Error Correction

1 Linear Block Codes

1. Determine all the codewords of the (n, k) linear code C with parity-check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

Determine the parameters n, k and $d_{\text {min }}$ of this code.
2. Consider an $(8,4)$ linear systematic code C with parity-check equations

$$
\begin{aligned}
\bar{v}_{0} & =u_{1}+u_{2}+u_{3} \\
\bar{v}_{1} & =u_{0}+u_{1}+u_{2} \\
\bar{v}_{2} & =u_{0}+u_{1}+u_{3} \\
\bar{v}_{3} & =u_{0}+u_{2}+u_{3}
\end{aligned}
$$

where $\left(u_{0}, u_{1}, u_{2}, u_{3}\right)$ forms the message and v_{0}, v_{1}, v_{2} and v_{3} are the parity-check bits.

- Determine a generator and parity matrix for C.
- Show that $d_{\text {min }}=4$.
- Determine the syndrome equations in terms of the received vector \bar{r}.

3. Let C be the $(6,3)$ linear code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Encode the message (011).
- Determine a parity-check matrix for C.
- Determine a standard array for C.
- What is the $d_{\text {min }}$ of C ?
- Is C a Hamming code?
- Decode the received vector $\bar{r}=(100110)$.

4. Let C be a linear code with parity-check matrix

$$
H=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Assume the vector received is (110101) and that only one error occurred during transmission. Find the transmitted codeword.
5. Determine a parity-check matrix for a Hamming code of length 15. Is the vector (011010110111000) a valid codeword?

2 Cyclic Codes

1. Consider the $(3,2)$ cyclic code generated by $1+x$.
(a) Tabulate all the messages with their corresponding code vectors as well as code polynomials
(b) Is the above code in systematic form?
2. Consider the $(7,3)$ cyclic code generated by $1+x+x^{2}+x^{4}$.
(a) Tabulate all the messages with their corresponding code vectors as well as code polynomials
(b) Determine the systematic generator matrix of the code.
3. Consider the $(7,4)$ cyclic systematic code generated by $1+x+x^{3}$. Encode the message $u(x)=1+x^{3}$ in systematic form.
4. Consider the $(15,11)$ cyclic systematic Hamming code C generated by the primitive polyno$\operatorname{mial} p(x)=1+x+x^{4}$.
(a) Determine the syndrome of $r(x)=1+x^{2}+x^{7}$.
(b) Determine the $d_{\text {min }}, n$ and k of the (n, k) cyclic code generated by $(x+1)\left(1+x+x^{4}\right)$.
(c) Determine the parity polynomial $h(x)$ of C.
(d) Determine the generator polynomial of C_{d}.
(e) Determine the generator and parity-check matrix (both in systematic form) of C.
(f) Tabulate the possible error polynomials and corresponding syndromes.
5. Consider the polynomial $g(x)=1+x^{2}+x^{4}+x^{6}+x^{7}+x^{10}$.
(a) Show that $g(x)$ generates a $(21,11)$ cyclic code.
(b) Determine the syndrome of $r(x)=1+x^{5}+x^{17}$.

3 Reed-Solomon Codes

1. Construct the Galois field $G F\left(2^{3}\right)$ with primitive polynomial $x^{3}+x+1$ and state each element's binary and power representation.
2. Determine the generator polynomial of a Reed-Solomon code of length 7 that can correct 2 errors. The polynomial $\left(x-\alpha^{1}\right)$ must be a factor of $g(x)$. Use the Galois field constructed in Question 1. Write down the parameters of this code.
3. Determine if $\alpha^{6}+\alpha^{2} x+\alpha^{3} x^{2}+\alpha^{4} x^{3}+\alpha^{6} x^{4}+\alpha^{4} x^{5}+\alpha^{6} x^{6}$ is a code polynomial of $C=$ $<g(x)>$.
4. Define an erasure. How do erasures differ from normal errors?
5. How many errors and erasures can a Reed-Solomon code correct?
