## Discrete Maths

# Data and Information Management: ELEN 3015 

School of Electrical and Information Engineering,
University of the Witwatersrand

## Overview

Discrete maths

Prime Numbers

Greatest Common Divisor (GCD)
Relative Prime

The Euler Totient Function

Modular Arithmetic

Fermat's Little Theorem

## 1. Discrete Math

We will look at aspects of number theory that apply to cryptography.

Discrete mathematics is a branch of mathematics that deals with Integers only.

## 1. Discrete Math

### 1.1 Prime Numbers <br> Def - Prime Number: Any integer greater than one that only has 1 and itself as divisors

Prime numbers: $2,3,5,7,11,13,17,19,23,29,31,37,41,43$, $47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113$,

Non-prime number is known as a composite
Fundamental theorem of arithmetic: every positive integer (except 1) can be represented in exactly one way as a product of one or more primes (Hardy and Wright 1979, pp. 2-3).

## 1. Discrete Math

1.2 Greatest Common Divisor (GCD)

Largest integer $d$ that divides $a$ and $b \in \mathbb{Z} \rightarrow$ Greatest Common Divisor of $a$ and $b$

Notation: $d=\operatorname{GCD}(a, b)$
Example: $\operatorname{GCD}(12,16)=4$
Euclidean algorithm can be used to determine GCD

## 1. Discrete Math

### 1.3 Relative Prime

Def - Relative prime: When $\operatorname{GCD}(a, b)=1, a$ and $b \in \mathbb{Z}$, then $a$ and $b$ are relative prime (also coprime)

In other words, they share no common factors other than 1
Neither $a$ and $b$ need to be prime
Example: $\operatorname{GCD}(15,28)=1$, thus 15 and 28 are relative prime

## 1. Discrete Math

### 1.4 The Euler Totient Function

Def - the totient $\varphi(n)$ of a positive integer $n$ is defined to be the number of positive integers less than $n$ that are relative prime to $n$.

$$
\varphi(n)= \begin{cases}n-1, & \mathrm{n} \text { prime } \\ (p-1)(q-1), & n=p q \text { with } p \text { and } q \text { prime }\end{cases}
$$

For first scenario, note that $p$ (prime) has $\{1,2,3, \ldots, p-1\}$ as relative primes

Note that the second scenario only represents a small subset of the composite numbers.

## 1. Discrete Math

### 1.5 Modular Arithmetic

Discrete maths operates only on integers ( $\mathbb{Z}$ )
Modular arithmetic restricts results to a maximum modulo size

Modulus means remainder after division

## 1. Discrete Math

### 1.5 Modular Arithmetic

Def - Equivalence / Congruency: Two integers are equivalent under modulus $n$ if their results $\bmod n$ are equal

Example: $16 \bmod 7=23 \bmod 7 \rightarrow 16 \equiv 23 \bmod 7$

## 1. Discrete Math

### 1.6 Properties of Modular Arithmetic

Modular arithmetic in non-negative integers forms a construct called a commutative ring with the operation + and $\times$.

If every number other than 0 has an inverse under multiplication, the group is called a Galois field. Example: The integers a mod $p$ forms a Galois field.

All rings have the properties of associativity and distributivity, commutative rings also have commutativity.

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Addition

| + | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ |  |  |  |  |  |
| $\mathbf{1}$ |  |  |  |  |  |
| $\mathbf{2}$ |  |  |  |  |  |
| $\mathbf{3}$ |  |  |  |  |  |
| $\mathbf{4}$ |  |  |  |  |  |

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Addition

| + | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | 0 | 1 | 2 | 3 | 4 |
| $\mathbf{1}$ | 1 | 2 | 3 | 4 | 0 |
| $\mathbf{2}$ | 2 | 3 | 4 | 0 | 1 |
| $\mathbf{3}$ | 3 | 4 | 0 | 1 | 2 |
| $\mathbf{4}$ | 4 | 0 | 1 | 2 | 3 |

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Additive identity $\rightarrow a+0=a$ for any $a \in \mathcal{F}$
Additive inverse of an element in $\mathcal{F}$ :

$$
a+(-a)=0
$$

Additive inverses:

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Additive identity $\rightarrow a+0=a$ for any $a \in \mathcal{F}$
Additive inverse of an element in $\mathcal{F}$ :

$$
a+(-a)=0
$$

Additive inverses:

- $0 \times 0 \bmod 5=0$
- $1 \times 4 \bmod 5=0$
- $2 \times 3 \bmod 5=0$


## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Multiplication

| $\times$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ |  |  |  |  |  |
| $\mathbf{1}$ |  |  |  |  |  |
| $\mathbf{2}$ |  |  |  |  |  |
| $\mathbf{3}$ |  |  |  |  |  |
| $\mathbf{4}$ |  |  |  |  |  |

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Example: Modulo 5 Multiplication

| $\times$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 1 | 2 | 3 | 4 |
| $\mathbf{2}$ | 0 | 2 | 4 | 1 | 3 |
| $\mathbf{3}$ | 0 | 3 | 1 | 4 | 2 |
| $\mathbf{4}$ | 0 | 4 | 3 | 2 | 1 |

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Multiplicative identity $\rightarrow a \times e=a$ for any $a \in \mathcal{F}$
$e=$

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Multiplicative identity $\rightarrow a \times e=a$ for any $a \in \mathcal{F}$
$e=1$

Multiplicative inverse of an element in $\mathcal{F}$ :

$$
a \times \frac{1}{a}=1
$$

Multiplicative Inverses:

## 1. Discrete Math

1.6 Properties of Modular Arithmetic

Multiplicative identity $\rightarrow a \times e=a$ for any $a \in \mathcal{F}$
$e=1$
Multiplicative inverse of an element in $\mathcal{F}$ :

$$
a \times \frac{1}{a}=1
$$

Multiplicative Inverses:

- $1 \times 1 \bmod 5=1$
- $2 \times 3 \bmod 5=1$
- $4 \times 4 \bmod 5=1$


## 1. Discrete Math

1.7 Modulo Inverses

Finite field (Galois Field) $\rightarrow$ every element except 0 has multiplicative inverse

Ring $\rightarrow$ not every element might have an inverse

## 1. Discrete Math

### 1.7 Modulo Inverses

Example: Multiplication Modulo 6

| $\times$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| $\mathbf{2}$ | 0 | 2 | 4 | 0 | 2 | 4 |
| $\mathbf{3}$ | 0 | 3 | 0 | 3 | 0 | 3 |
| $\mathbf{4}$ | 0 | 4 | 2 | 0 | 4 | 2 |
| $\mathbf{5}$ | 0 | 5 | 4 | 3 | 2 | 1 |

2,3 and 4 doesn't have inverses under modulo 6 multiplication 2,3 and 4 not relative prime to 6

Modulo under a prime number $\rightarrow$ Field (Galois Field), every nonzero element has an inverse

## 1. Discrete Math

1.7 Modulo Inverses

Example:
$4 \times \lambda \equiv 1 \bmod 7 \rightarrow 4 \lambda=7 k+1, k \in \mathbb{Z}$
General Problem:

$$
\begin{gathered}
1=(a \times \lambda) \bmod n \\
a^{-1} \equiv \lambda \bmod n
\end{gathered}
$$

For Example: $4^{-1}=2(\mathcal{F}=x \bmod 5)$

## 1. Discrete Math

1.8 Fermat's Little Theorem

If $p$ is a prime, and $a$ is not a multiple of $p$ :

$$
a^{p-1} \equiv 1 \bmod p
$$

Euler's generalization:
if $\operatorname{GCD}(a, n)=1$ :

$$
a^{\varphi(n)} \bmod \mathrm{n}=1
$$

To compute inverse $x$ :

$$
x=a^{\varphi(n)-1} \quad \bmod n
$$

(Can also use Euclid's algorithm)

## 1. Discrete Math

1.9 Properties of Modular Arithmetic

| Associativity | $[a+(b+c)] \bmod n=[(a+b)+c] \bmod n$ <br> $[a \times(b \times c)] \bmod n=[(a \times b) \times c] \bmod n$ |
| :--- | :--- |
| Commutativity | $(a+b) \bmod n=(b+a) \bmod n$ <br> $(a \times b) \bmod n=(b \times a) \bmod n$ |
| Distributivity | $(a \times(b+c)) \bmod n$ <br> $=((a \times b)+(a \times c)) \bmod n$ |
| Identities | $(a+0) \bmod n=(0+a) \bmod n=a$ <br> $(a \times 1) \bmod n=(1 \times a) \bmod n=a$ |
| Inverses | $(a+(-a)) \bmod n=0$ <br> $\left(a \times a^{-1}\right) \bmod n=1$ |
| Reducibility | $(a+b) \bmod n$ <br> $=((a \bmod n)+(b \bmod n)) \bmod n$ |
| $(a \times b) \bmod n$ <br> $=((a \bmod n) \times(b \bmod n)) \bmod n$ |  |

### 1.10 Euclidean Algorithm

## Not in the notes!

For any pair of positive integers $a$ and $b$, we may find $\operatorname{gcd}(a, b)$ by repeated use of division to produce a decreasing sequence of integers $r_{1}>r_{2}>\cdots$ as follows.

$$
\begin{array}{ll}
a=b q_{1}+r_{1} & 0<r_{1}<b, \\
b=r_{1} q_{2}+r_{2} & 0<r_{2}<r_{1}, \\
r_{1}=r_{2} q_{3}+r_{3} & 0<r_{3}<r_{2}, \\
\vdots & \vdots \\
r_{k-3}=r_{k-2} q_{k-1}+r_{k-1} & 0<r_{k-1}<r_{k-2}, \\
r_{k-2}=r_{k-1} q_{k}+r_{k} & 0<r_{k}<r_{k-1}, \\
r_{k-1}=r_{k} q_{k+1}+0 &
\end{array}
$$

### 1.11 Extended Euclidean Algorithm

Not in the notes!

For any nonzero integers $a$ and $b$, there exist integers $s$ and $t$ such that $\operatorname{gcd}(a, b)=a s+b t$. Moreover, $\operatorname{gcd}(a, b)$ is the smallest positive integer of the form $a s+b t$.

Extended Euclidean Algorithm

$$
r_{i}=r_{i-2}-\left\lfloor\frac{r_{i-2}}{r_{i-1}}\right\rfloor \cdot r_{i-1}
$$

### 1.11 Extended Euclidean Algorithm

Example: GCD $(120,23)$

| Step | Quotient | Remainder | Expression |
| :--- | :--- | :--- | :--- |
| 1 |  | 120 | $120=120 \times 1+23 \times 0$ |
| 2 |  | 23 | $23=120 \times 0+23 \times 1$ |
| 3 | 5 | 5 | $5=(120 \times 1+23 \times 0)-(120 \times 0+23 \times 1) \times 5$ |

### 1.11 Extended Euclidean Algorithm

Example: $\operatorname{GCD}(120,23)$

| Step | Quotient | Remainder | Expression |
| :---: | :---: | :---: | :---: |
| 1 |  | 120 | $120=120 \times 1+23 \times 0$ |
| 2 |  | 23 | $23=120 \times 0+23 \times 1$ |
| 3 | 5 | 5 | $\begin{aligned} & 5=(120 \times 1+23 \times 0)-(120 \times 0+23 \times 1) \times 5 \\ & 5=120 \times 1+23 \times-5 \end{aligned}$ |
| 4 | 4 | 3 | $\begin{aligned} & 3=23-5 \times 4 \\ & 3=(120 \times 0+23 \times 1)-4(120-5 \times 23) \\ & 3=120 \times-4+23 \times 21 \end{aligned}$ |
| 5 | 1 | 2 | $\begin{aligned} & 2=5-3 \times 1 \\ & 2=(120 \times 1+23 \times-5)-(120 \times-4+23 \times 21) \\ & 2=120 \times 5-23 \times 26 \end{aligned}$ |
| 6 | 1 | 1 | $\begin{aligned} & 1=3-2 \times 1 \\ & 1=(120 \times-4+23 \times 21)-(120 \times 5-23 \times 26) \\ & 1=120 \times-9+23 \times 47 \end{aligned}$ |
| 7 | 2 | 0 |  |

### 1.11 Extended Euclidean Algorithm

Extended Euclidean Algorithm can be used to calculate the multiplicative inverse of a number in a ring (if they exist)

From example: $1=120 \times-9+23 \times 46$

Over the ring mod 120, 23 and 46 are multiplicative inverses of each other

## Summary

Discrete maths

Prime Numbers

Greatest Common Divisor (GCD)
Relative Prime

The Euler Totient Function
Modular Arithmetic

Fermat's Little Theorem
Euclidean Algorithm and Extended Euclidean Algorithm

