#### Lecture 2: Classical Cryptography

#### Data and Information Management: ELEN 3015

School of Electrical and Information Engineering, University of the Witwatersrand

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monoalphabetic Cipher - Frequency analysis

**Classical Ciphers** 

Other Substitution Ciphers

Transposition ciphers

Stream vs Block Enciphering

## 1. Homework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

hqfubswlrq lv d phdqv ri dwwdlqlqj vhfxuh frpsxwdwlrq ryhu lqvhfxuh fkdqqhov eb xvlqj hqfubswlrq zh glvjxlvh wkh phvvdjh vr wkdw hyhq li wkh wudqvplvvlrq lv glyhuwhg wkh phvvdjh zloo qrw eh uhyhdohg

# 1. Monoalphabetic Cipher - Frequency analysis

Do a frequency analysis

Letter distribution of English language is fixed (for a large body of text)

Tables of letter distribution

For instance, most commonly used letter is "e"

# 1. Monoalphabetic Cipher - Frequency analysis



# 1. Monoalphabetic Cipher - Answer

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

#### ENCRYPTION IS A MEANS OF ATTAINING SECURE COMMUNICATION OVER INSECURE CHANNELS BY USING ENCRYPTION WE DISGUISE THE MESSAGE SO THAT EVEN IF THE TRANSMISSION IS DIVERTED THE MESSAGE WILL NOT BE REVEALED

#### 2. Classical Ciphers

How do we increase security of the monoalphabetic cipher?

# 3. Polyalphabetic ciphers

Use more than one alphabetic substitution to flatten the frequency distribution

Combine substitutions that are high with those that are low

Eg use:

- $P_1(a) = (a*3) \mod 26$
- $P_2(a) = ((5^*a)+13) \mod 26$

# 3. Polyalphabetic ciphers

| Ciph | er I: |   |   |   |   |   |       |   |   |   |   |   |   |   |
|------|-------|---|---|---|---|---|-------|---|---|---|---|---|---|---|
| À    | В     | С | D | Е | F | G | <br>S | Т | U | V | W | Х | Υ | Ζ |
| а    | d     | g | j | m | р | S | <br>С | f | i | Ι | 0 | r | u | х |
| Ciph | er II | : |   |   |   |   |       |   |   |   |   |   |   |   |
| A    | В     | С | D | Е | F | G | <br>S | Т | U | V | W | Х | Υ | Ζ |
| n    | s     | х | с | h | m | r | <br>z | e | i | 0 | t | y | d | i |

# 3. Polyalphabetic ciphers - Frequency distribution



### 3. Vigenere tables

|   | a | b | С | d | е | f |   | t | u | v | w | х | У | z | $\pi$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|
| Α | а | b | С | d | е | f |   | t | u | v | w | х | у | z | 0     |
| В | b | С | d | е | f | g |   | u | v | w | х | У | z | а | 1     |
| С | с | d | е | f | g | h |   | v | W | х | у | z | а | b | 2     |
| ÷ |   |   | ÷ |   |   |   | · |   |   |   | ÷ |   |   |   | ÷     |
| Х | x | у | z | а | b | с |   | q | r | s | t | u | v | w | 23    |
| Υ | у | z | а | b | с | d |   | r | S | t | u | v | w | х | 24    |
| Ζ | z | а | b | с | d | е |   | s | t | u | v | W | х | у | 25    |

### 3. Polyalphabetic Keys

Some type of key needed for polyalphabetic ciphers

Can be a series of indices for monoalphabetic substitution using

- formula  $\rightarrow P_n(a) = (a+n) \mod 26$
- key → 0123456789

## 3. Polyalphabetic Keys

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

More usually key is some codeword

Eg, use delta as keyword

| d | е |   | t | а | d | е |   | t | а | d | e |   | t | а | d | e |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| S | Н | Е | S | Е | L | L | S | S | Е | А | S | Н | Е | L | L | S |
| v |   | р | 1 | е | 0 | р | d | 1 | е | d | w | S | х | I | 0 | w |

frequency distribution not totally flat

### 4. Other Substitution Ciphers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ROT(13)

XOR function (Bitwise)

Rotor Machines (WW II style)

# 5. Transposition ciphers

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Effectively creates a permutation of the plaintext

Letters do not change - Only the order in which they are written

 $\mathsf{Eg} \to \mathsf{seapigeon}$ 

# 5. Transposition ciphers

(ロ)、(型)、(E)、(E)、 E) の(の)

#### What is the letter frequency of a transposition cipher?

# 5. Transposition ciphers

Diffusion - process of mixing up plaintext to form ciphertext (transposition)

Confusion - disguising each of the plaintext characters (substitution)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Plaintext:

Ciphertext:

#### $C_1 C_6 C_{11} \quad C_2 C_7 C_{12} \quad C_3 C_8 C_{13} \quad C_4 C_9 C_{14} \quad C_5 C_{10} C_{15}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Well Known Columnar Transposition:

tcrnu oramg oypao mphkn utyeu cocyt hgaos

Answer:

#### Answer:

| Т | 0 | 0 | Μ | U | С | Н |
|---|---|---|---|---|---|---|
| С | R | Υ | Ρ | Т | 0 | G |
| R | А | Ρ | Н | Υ | С | А |
| Ν | Μ | А | Κ | Е | Υ | 0 |
| U | G | 0 | Ν | U | Т | S |

#### 5.2 Transposition ciphers - characteristics

Delay in encoding and decoding

Can use a lot of memory

Not appropriate for large amounts of data

#### 6. Stream vs Block Enciphering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Substitution cipher a stream cipher

Columnar Transposition a block cipher

# 6.1 Stream Cipher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Advantages:

- Speed of transformation
- Low error propagation

Disadvantages

- Low diffusion
- Susceptible to integrity attacks

## 6.2 Block Cipher

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Advantages:

- Diffusion
- Immunity to insertions

Disadvantages:

- Slow translation
- Error propogation

# Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monoalphabetic Cipher - Frequency analysis

**Classical Ciphers** 

Other Substitution Ciphers

Transposition ciphers

Stream vs Block Enciphering