UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

SCHOOL OF ELECTRICAL AND INFORMATION ENGINEERING

ELEN2008 Electric Circuits:

EXAMINATION June 2015

Internal Examiner:	Prof Estelle Trengove
External Examiner:	Prof HE Hanrahan

TOTAL MARKS: 100
TIME: 3 hours

Instructions

Answer ALL questions. There are 110 possible marks, but the paper will be marked out of 100.

Knowledge Area 1: Basic Concepts [40 marks]

Question 1 [40 marks]

Note: Where indicated, solutions to this question must be entered on the sheet supplied. The final answer only is to be shown. Do not include any working on the sheet.

Figure 1: Six circuits containing various configurations of sources, resistors, capacitors and inductors
a) Enter the values on the sheet supplied for v_{l} and v_{2} for the circuit shown in Figure 1 (i). Indicate whether each source is supplying or absorbing power and how much power is being supplied/absorbed. Do not show any working on the sheet.
(6 marks)
b) For the circuit shown in Figure 1 (ii) enter the value for v_{3} on the sheet supplied. Indicate whether each source is supplying or absorbing power and how much power is being supplied/absorbed. Do not show any working on the sheet.
c) For the circuit shown in Figure 1 (iii) calculate and enter the values for i_{2}, i_{3}, i_{4} and v_{5} on the sheet supplied. (Hint: to calculate i_{2} you will have to reduce the circuit to a source and a single resistor.) Do not show any working on the sheet.
(7 marks)
d) On the answer sheet provided, calculate and enter the impedances of the inductor and calculate and enter the values of voltages v_{6} and v_{7} and current i_{6} for the circuit shown in Figure 1 (iv).
e) For the circuit shown in Figure 1 (v) calculate and enter the values for i_{2} and v_{4} on the sheet supplied. Indicate whether each source is supplying or absorbing power and how much power is being supplied/absorbed. Do not show any working on the sheet. (7 marks)
f) Answer this question in your exam script and not on the sheet provided. For the circuit shown in Figure 1 (vi):

- Determine the impedance of the capacitor.
- Determine the current i_{8} using vectors and a phasor diagram (no complex mathematics)
(5 marks)

Knowledge Area 2: Analysis techniques [30 marks]

Question 2 (15 marks)

i. Consider the circuit shown in Figure 2. Use mesh analysis to set up simultaneous equations and solve your equations to find values for the mesh currents.
(6 marks)
ii. Consider the circuit shown in Figure 2. Use superposition to find the voltage across terminals a and $b, v_{a b}$.

Figure 2: Circuit containing resistors and sources

Question 3 (15 marks)

Figure 3: Resistive circuit with a voltage and a current source
a) Consider the circuit shown in Figure 3. Use nodal analysis and solve for all the node voltages.
b) Consider the different circuit analysis techniques that you know (mesh and nodal analysis, superposition and Thévenin's and Norton's theorems, which one would you regards as most suitable for analyzing the circuit in Figure 3? Explain why you consider the technique that you chose as the most suitable one.

Knowledge Area 3: Laboratory concepts and techniques [20 marks]

Question 4 (10 marks)

Figure 4: Two sinusoidal signals
Referring to Figure 4, determine the following:
a) Measure the phase shift between the two signals and give it in degrees and in radians;
b) The peak to peak voltage of each of the signals;
c) The period of each of the signals signals;
d) The frequency of each of the signals.

Question 5 (10 marks)

Table 1: Resistor values and voltage measurements

Resistor (Ω)	Voltage (V)	Current (mA)
200	2	
375	3	
500	3.5	
3000	6	

Four different load resistors were placed in turn across the output of a circuit and, in each case, the voltage across the resistor was measured, as shown in Table 1.
a) Redraw Table 1, calculate the current in the load resistor in mA and enter the values in your table.
b) Draw a graph of the variables in Table 1 and use the graph to estimate the Thévenin equivalent and the Norton equivalent circuit values of the circuit. Draw the Thévenin and Norton equivalent circuits labeled with these values.

Knowledge Area 4: Complex real circuits [20 marks]

Question 6

a) Analyse the circuit in Figure 5 and calculate $v_{\text {out }}$ and $i_{\text {out }}$.

Figure 5: Circuit containing 3 operational amplifiers and two voltage sources
b) Analyse the circuit in Figure 6 and calculate $v_{o l}, v_{o 2}$ and $v_{o 3}$.
(10 marks)

Figure 6: Circuit containing three cascaded operational amplifiers

School of Electrical and Information Engineering
University of the Witwatersrand, Johannesburg
ELEN2008 Electric Circuits

Examination June 2015: Answer sheet

Student number: \qquad Row: \qquad Seat: \qquad

Question 1(a) (6 marks)
$v_{l}=$ \qquad
$v_{2}=$ \qquad
Is the 2 mA source supplying or absorbing power? \qquad
How much power is the 2 mA source supplying or absorbing? \qquad mW

Is the 9 V source supplying or absorbing power? \qquad
How much power is the 9 V source supplying or absorbing? \qquad mW

Question 1(b) (7 marks)
$v_{3}=$ \qquad
Is the 8 mA source supplying or absorbing power? \qquad
How much power is the 8 mA source supplying or absorbing? \qquad mW

Is the 11 V source supplying or absorbing power? \qquad
How much power is the 11 V source supplying or absorbing? \qquad mW

Is the 7 V source supplying or absorbing power? \qquad
How much power is the 7 V source supplying or absorbing? \qquad mW

Question 1(c) (7 marks)

Current i_{2} in Figure 1 (iii) is \qquad

Current i_{3} in Figure 1 (iii) is \qquad

Current i_{4} in Figure 1 (iii) is \qquad

Voltage v_{5} in Figure 1 (iii) is \qquad

Question 1(d) (6 marks)
Impedance of the inductor in Figure 1 (iv) is: \qquad

Current i_{6} in Figure 1 (iv) is \qquad

Voltage v_{6} in Figure 1 (iv) is \qquad

Voltage v_{7} in Figure 1 (iv) is \qquad

Question 1(e) (7 marks)
Current i_{7} in Figure 1 (v) is \qquad

The voltage $v_{8}=$ \qquad
Is the 12 mA source supplying or absorbing power? \qquad
How much power is the 12 mA source supplying or absorbing? \qquad W

Is the dependant current source supplying or absorbing power? \qquad
How much power is the dependant current source supplying or absorbing? \qquad W

Question 1(f) (7 marks)
Answer in your exam script, not on the sheet.

